@article{DMGT_1996_16_2_a8,
author = {Schimming, Rainer},
title = {A partition of the {Catalan} numbers and enumeration of genealogical trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {181--195},
year = {1996},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a8/}
}
Schimming, Rainer. A partition of the Catalan numbers and enumeration of genealogical trees. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 181-195. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a8/
[1] H. Bickel and E.H.A. Gerbracht, Lösung I zu Problem 73, Math. Semesterber. 42 (1995) 185-187.
[2] H.L. Biggs et al., Graph Theory 1736-1936 (Clarendon Press, Oxford 1976).
[3] A. Cayley, On the theory of the analytical forms called trees I, II, Phil. Mag. 13 (1857) 172-176; 18 (1859) 374-378.
[4] R.B. Eggleton and R.K. Guy, Catalan Strikes Again! How Likely Is a Function to Be Convex?, Math. Magazine 61 (1988) 211-219, doi: 10.2307/2689355.
[5] P. Hilton and J. Pedersen, Catalan Numbers, Their Generalizations, and Their Uses, Math. Intelligencer 13 (1991) 64-75, doi: 10.1007/BF03024089.
[6] G. Polya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145-254, doi: 10.1007/BF02546665.
[7] W.W. Rouse Ball and H.S.M. Coxeter, Mathematical Recreations and Essays (12th Edition, Univ. of Toronto Press 1974).
[8] R. Schimming, Lösung II zu Problem 73, Math. Semesterber. 42 (1995) 188-189.
[9] P. Schreiber, Problem 73, Anzahl von Termen. Math. Semesterber. 41 (1994) 207.
[10] P. Schreiber, Lösung III zu Problem 73, Math. Semesterber. 42 (1995) 189-190.
[11] Wang Zhenyu, Some properties of ordered trees, Acta Math. Sinica 2 (1982) 81-83.
[12] Wang Zhenyu and Sun Chaoyi, More on additive enumeration problems over trees, Acta Math. Sinica 10 (1990) 396-401.