A partition of the Catalan numbers and enumeration of genealogical trees
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 181-195.

Voir la notice de l'article provenant de la source Library of Science

A special relational structure, called genealogical tree, is introduced; its social interpretation and geometrical realizations are discussed. The numbers C_n,k of all abstract genealogical trees with exactly n+1 nodes and k leaves is found by means of enumeration of code words. For each n, the C_n,k form a partition of the n-th Catalan numer Cₙ, that means C_n,1+C_n,2+ ...+C_n,n = Cₙ.
Keywords: genealogical tree, Catalan number, generating function
@article{DMGT_1996_16_2_a8,
     author = {Schimming, Rainer},
     title = {A partition of the {Catalan} numbers and enumeration of genealogical trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {181--195},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a8/}
}
TY  - JOUR
AU  - Schimming, Rainer
TI  - A partition of the Catalan numbers and enumeration of genealogical trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 181
EP  - 195
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a8/
LA  - en
ID  - DMGT_1996_16_2_a8
ER  - 
%0 Journal Article
%A Schimming, Rainer
%T A partition of the Catalan numbers and enumeration of genealogical trees
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 181-195
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a8/
%G en
%F DMGT_1996_16_2_a8
Schimming, Rainer. A partition of the Catalan numbers and enumeration of genealogical trees. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 181-195. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a8/

[1] H. Bickel and E.H.A. Gerbracht, Lösung I zu Problem 73, Math. Semesterber. 42 (1995) 185-187.

[2] H.L. Biggs et al., Graph Theory 1736-1936 (Clarendon Press, Oxford 1976).

[3] A. Cayley, On the theory of the analytical forms called trees I, II, Phil. Mag. 13 (1857) 172-176; 18 (1859) 374-378.

[4] R.B. Eggleton and R.K. Guy, Catalan Strikes Again! How Likely Is a Function to Be Convex?, Math. Magazine 61 (1988) 211-219, doi: 10.2307/2689355.

[5] P. Hilton and J. Pedersen, Catalan Numbers, Their Generalizations, and Their Uses, Math. Intelligencer 13 (1991) 64-75, doi: 10.1007/BF03024089.

[6] G. Polya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145-254, doi: 10.1007/BF02546665.

[7] W.W. Rouse Ball and H.S.M. Coxeter, Mathematical Recreations and Essays (12th Edition, Univ. of Toronto Press 1974).

[8] R. Schimming, Lösung II zu Problem 73, Math. Semesterber. 42 (1995) 188-189.

[9] P. Schreiber, Problem 73, Anzahl von Termen. Math. Semesterber. 41 (1994) 207.

[10] P. Schreiber, Lösung III zu Problem 73, Math. Semesterber. 42 (1995) 189-190.

[11] Wang Zhenyu, Some properties of ordered trees, Acta Math. Sinica 2 (1982) 81-83.

[12] Wang Zhenyu and Sun Chaoyi, More on additive enumeration problems over trees, Acta Math. Sinica 10 (1990) 396-401.