Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1996_16_2_a7, author = {Urba\'nski, Sebastian}, title = {Remarks on 15-vertex (3,3)-ramsey graphs not containing {K₅}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {173--179}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a7/} }
Urbański, Sebastian. Remarks on 15-vertex (3,3)-ramsey graphs not containing K₅. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a7/
[1] J. Bukor, A note on the Folkman number F(3,3;5), Math. Slovaca 44 (1994) 479-480.
[2] P. Erdős and A. Hajnal, Research problem 2-5, J. Combin. Theory 2 (1967) 104.
[3] M. Erickson, An upper bound for the Folkman number F(3,3;5), J. Graph Theory 17 (1993) 679-681, doi: 10.1002/jgt.3190170604.
[4] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970) 19-24, doi: 10.1137/0118004.
[5] P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K₄, Graphs and Combinatorics 2 (1986) 135-144, doi: 10.1007/BF01788087.
[6] R.L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combin. Theory 4 (1968) 300, doi: 10.1016/S0021-9800(68)80009-2.
[7] R.L. Graham and J.H. Spencer, On small graphs with forced monochromatic triangles, in: Recent Trends in Graph Theory. Lecture Notes in Math. 186 (Springer-Verlag, Berlin, 1971) 137-141, doi: 10.1007/BFb0059431.
[8] N. Hadziivanov and N. Nenov, On Graham-Spencer number, C.R. Acad. Bulg. Sci. 32 (1979) 155-158.
[9] N. Hadziivanov and N. Nenov, On Ramsey graphs, God. Sofij. Univ. Fak. Mat. Mech. 78 (1984) 211-214.
[10] N. Hadziivanov and N. Nenov, Every (3,3)-Ramsey graph without 5-cliques has more than 11 vertices, Serdica 11 (1985) 341-356.
[11] R.W. Irving, On a bound of Graham and Spencer for graph-coloring constant, J. Combin. Theory 15 (1973) 200-203, doi: 10.1016/0095-8956(73)90021-X.
[12] S. Lin, On Ramsey numbers and $K_r$-coloring of graphs, J. Combin. Theory (B) 12 (1972) 82-92, doi: 10.1016/0095-8956(72)90034-2.
[13] N. Nenov, New lower bound for Graham-Spencer number, Serdica 6 (1980) 373-383.
[14] N. Nenov, An example of 15-vertex (3,3)-Ramsey graph with the clique number 4, C.R. Acad. Bulg. Sci. 34 (1981) 1487-1489.
[15] M. Schauble, Zu einem Kantenfarbungsproblem, Wiss. Z. Th. Ilemenau 15 (1969) 55-58.
[16] J. Spencer, Three hundred million points suffice, J. Combin. Theory (A) 49 (1988) 210-217. See erratum in 50 p. 323.