Remarks on 15-vertex (3,3)-ramsey graphs not containing K₅
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 173-179.

Voir la notice de l'article provenant de la source Library of Science

The paper gives an account of previous and recent attempts to determine the order of a smallest graph not containing K₅ and such that every 2-coloring of its edges results in a monochromatic triangle. A new 14-vertex K₄-free graph with the same Ramsey property in the vertex coloring case is found. This yields a new construction of one of the only two known 15-vertex (3,3)-Ramsey graphs not containing K₅.
Keywords: Folkman numbers, Kₙ-free graphs, extremal graph theory, generalized Ramsey theory
@article{DMGT_1996_16_2_a7,
     author = {Urba\'nski, Sebastian},
     title = {Remarks on 15-vertex (3,3)-ramsey graphs not containing {K₅}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a7/}
}
TY  - JOUR
AU  - Urbański, Sebastian
TI  - Remarks on 15-vertex (3,3)-ramsey graphs not containing K₅
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 173
EP  - 179
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a7/
LA  - en
ID  - DMGT_1996_16_2_a7
ER  - 
%0 Journal Article
%A Urbański, Sebastian
%T Remarks on 15-vertex (3,3)-ramsey graphs not containing K₅
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 173-179
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a7/
%G en
%F DMGT_1996_16_2_a7
Urbański, Sebastian. Remarks on 15-vertex (3,3)-ramsey graphs not containing K₅. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a7/

[1] J. Bukor, A note on the Folkman number F(3,3;5), Math. Slovaca 44 (1994) 479-480.

[2] P. Erdős and A. Hajnal, Research problem 2-5, J. Combin. Theory 2 (1967) 104.

[3] M. Erickson, An upper bound for the Folkman number F(3,3;5), J. Graph Theory 17 (1993) 679-681, doi: 10.1002/jgt.3190170604.

[4] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970) 19-24, doi: 10.1137/0118004.

[5] P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K₄, Graphs and Combinatorics 2 (1986) 135-144, doi: 10.1007/BF01788087.

[6] R.L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combin. Theory 4 (1968) 300, doi: 10.1016/S0021-9800(68)80009-2.

[7] R.L. Graham and J.H. Spencer, On small graphs with forced monochromatic triangles, in: Recent Trends in Graph Theory. Lecture Notes in Math. 186 (Springer-Verlag, Berlin, 1971) 137-141, doi: 10.1007/BFb0059431.

[8] N. Hadziivanov and N. Nenov, On Graham-Spencer number, C.R. Acad. Bulg. Sci. 32 (1979) 155-158.

[9] N. Hadziivanov and N. Nenov, On Ramsey graphs, God. Sofij. Univ. Fak. Mat. Mech. 78 (1984) 211-214.

[10] N. Hadziivanov and N. Nenov, Every (3,3)-Ramsey graph without 5-cliques has more than 11 vertices, Serdica 11 (1985) 341-356.

[11] R.W. Irving, On a bound of Graham and Spencer for graph-coloring constant, J. Combin. Theory 15 (1973) 200-203, doi: 10.1016/0095-8956(73)90021-X.

[12] S. Lin, On Ramsey numbers and $K_r$-coloring of graphs, J. Combin. Theory (B) 12 (1972) 82-92, doi: 10.1016/0095-8956(72)90034-2.

[13] N. Nenov, New lower bound for Graham-Spencer number, Serdica 6 (1980) 373-383.

[14] N. Nenov, An example of 15-vertex (3,3)-Ramsey graph with the clique number 4, C.R. Acad. Bulg. Sci. 34 (1981) 1487-1489.

[15] M. Schauble, Zu einem Kantenfarbungsproblem, Wiss. Z. Th. Ilemenau 15 (1969) 55-58.

[16] J. Spencer, Three hundred million points suffice, J. Combin. Theory (A) 49 (1988) 210-217. See erratum in 50 p. 323.