@article{DMGT_1996_16_2_a6,
author = {Kordecki, Wojciech},
title = {Poisson convergence of numbers of vertices of a given degree in random graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {157--172},
year = {1996},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a6/}
}
Kordecki, Wojciech. Poisson convergence of numbers of vertices of a given degree in random graphs. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 157-172. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a6/
[1] A.D. Barbour, Poisson convergence and random graphs, Math. Proc. Camb. Phil. Soc. 92 (1982) 349-359, doi: 10.1017/S0305004100059995.
[2] A.D. Barbour and G.K. Eagleason, Poisson approximation for some statistics based on exchangeable trials, Adv. Appl. Prob. 15 (1983) 585-600, doi: 10.2307/1426620.
[3] A.D. Barbour, L. Holst and S. Janson, Poisson approximation (Clarendon Press, Oxford, 1992).
[4] M. Karoński and A. Ruciński, Poisson convergence and semiinduced properties of random graphs, Math. Proc. Camb. Phil. Soc. 101 (1987) 291-300, doi: 10.1017/S0305004100066664.
[5] V.L. Klee, D.G. Larman and E.M. Wright, The proportion of labelled bipartite graphs which are connected, J. London Math. Soc. 24 (1981) 397-404, doi: 10.1112/jlms/s2-24.3.397.
[6] W. Kordecki, Vertices of given degree in a random graph, Prob. Math. Stat. 11 (1991) 287-290.
[7] Z. Palka, On the degrees of vertices in a bichromatic random graph, Period. Math. Hung. 15 (1984) 121-126, doi: 10.1007/BF01850725.
[8] Z. Palka, Asymptotic properties of random graphs, Dissertationes Mathematicae, CCLXXV (PWN, Warszawa, 1998).
[9] Z. Palka and A. Ruciński, Vertex-degrees in a random subgraph of a regular graph, Studia Scienc. Math. Hung. 25 (1990) 209-214.