Unavoidable set of face types for planar maps
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 123-141.

Voir la notice de l'article provenant de la source Library of Science

The type of a face f of a planar map is a sequence of degrees of vertices of f as they are encountered when traversing the boundary of f. A set of face types is found such that in any normal planar map there is a face with type from . The set has four infinite series of types as, in a certain sense, the minimum possible number. An analogous result is applied to obtain new upper bounds for the cyclic chromatic number of 3-connected planar maps.
Keywords: normal planar map, plane graph, type of a face, unavoidable set, cyclic chromatic number
@article{DMGT_1996_16_2_a3,
     author = {Hor\v{n}\'ak, Mirko and Jendrol, Stanislav},
     title = {Unavoidable set of face types for planar maps},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {123--141},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a3/}
}
TY  - JOUR
AU  - Horňák, Mirko
AU  - Jendrol, Stanislav
TI  - Unavoidable set of face types for planar maps
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 123
EP  - 141
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a3/
LA  - en
ID  - DMGT_1996_16_2_a3
ER  - 
%0 Journal Article
%A Horňák, Mirko
%A Jendrol, Stanislav
%T Unavoidable set of face types for planar maps
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 123-141
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a3/
%G en
%F DMGT_1996_16_2_a3
Horňák, Mirko; Jendrol, Stanislav. Unavoidable set of face types for planar maps. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 123-141. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a3/

[1] O.V. Borodin, On the total coloring of planar graphs, J. reine angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180.

[2] O.V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142.

[3] O.V. Borodin, A structural theorem on planar maps and its application to coloring, Diskret. Mat. 4 (1992) 60-65. (Russian)

[4] O.V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109-117, doi: 10.1002/mana.19921580108.

[5] O.V. Borodin, Joint extension of two theorems of Kotzig on 3-polytopes, Combinatorica 13 (1993) 121-125, doi: 10.1007/BF01202794.

[6] O.V. Borodin, The structure of edge neighbourhoods in plane graphs and the simultaneous coloring of vertices, edges and faces, Mat. Zametki 53 (1993) 35-47. (Russian)

[7] O.V. Borodin, Simultaneous coloring of edges and faces of plane graphs, Discrete Math. 128 (1994) 21-33, doi: 10.1016/0012-365X(94)90101-5.

[8] O.V. Borodin, Triangles with restricted degree sum of their boundary vertices in plane graphs, Discrete Math. 137 (1995) 45-51, doi: 10.1016/0012-365X(94)E0144-7.

[9] O.V. Borodin and D. P. Sanders, On light edges and triangles in planar graphs of minimum degree five, Math. Nachr. 170 (1994) 19-24, doi: 10.1002/mana.19941700103.

[10] B. Grünbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-408, doi: 10.1007/BF02764716.

[11] B. Grünbaum, New views on some old questions of combinatorial geometry, in.: Proc. Internat. Colloq. Combin. Theory (Rome, 1973) Accad. Naz. Lincei Rome (1976) 451-468.

[12] B. Grünbaum and G.C. Shephard, Analogues for tilings of Kotzig's theorem on minimal weights of edges, Ann. Discrete Math. 12 (1982) 129-140.

[13] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9.

[14] S. Jendrol' and Z. Skupień, On the vertex/edge distance colourings of planar graphs, submitted.

[15] T.R. Jensen and B. Toft, Graph Coloring Problems (John Wiley, Inc. New York, 1995).

[16] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Casopis Sloven. Akad. Vied 5 (1955) 101-103. (Slovak)

[17] A. Kotzig, On the theory of Euler polyhedra, Mat.-Fyz. Casopis Sloven. Akad. Vied 13 (1963) 20-31. (Russian)

[18] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570.

[19] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 19-43.

[20] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics), Academic Press, New York (1969) 287-293.

[21] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515, doi: 10.1002/jgt.3190110407.

[22] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968.

[23] J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296, doi: 10.1007/BF02804013.