On light subgraphs in plane graphs of minimum degree five
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 207-217.

Voir la notice de l'article provenant de la source Library of Science

A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is well known that a plane graph of minimum degree five contains light edges and light triangles. In this paper we show that every plane graph of minimum degree five contains also light stars K_1,3 and K_1,4 and a light 4-path P₄. The results obtained for K_1,3 and P₄ are best possible.
Keywords: planar graph, light subgraph, star, triangulation
@article{DMGT_1996_16_2_a10,
     author = {Jendrol', Stanislav and Madaras, Tom\'a\v{s}},
     title = {On light subgraphs in plane graphs of minimum degree five},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {207--217},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a10/}
}
TY  - JOUR
AU  - Jendrol', Stanislav
AU  - Madaras, Tomáš
TI  - On light subgraphs in plane graphs of minimum degree five
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 207
EP  - 217
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a10/
LA  - en
ID  - DMGT_1996_16_2_a10
ER  - 
%0 Journal Article
%A Jendrol', Stanislav
%A Madaras, Tomáš
%T On light subgraphs in plane graphs of minimum degree five
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 207-217
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a10/
%G en
%F DMGT_1996_16_2_a10
Jendrol', Stanislav; Madaras, Tomáš. On light subgraphs in plane graphs of minimum degree five. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 207-217. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a10/

[1] J.A. Bondy and U.S.R. Murty, Graph theory with applications (North Holland, Amsterdam 1976).

[2] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Math. Notes 46 (1989) 835-837, doi: 10.1007/BF01139613.

[3] O.V. Borodin and D.P. Sanders, On light edges and triangles in planar graphs of minimum degree five, Math. Nachr. 170 (1994) 19-24, doi: 10.1002/mana.19941700103.

[4] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics (to appear).

[5] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236; or in: N.L. Biggs, E.K. Lloyd, R.J. Wilson (eds.), Graph Theory 1737 - 1936 (Clarendon Press, Oxford 1977).

[6] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. źas. SAV (Math. Slovaca) 5 (1955) 111-113.

[7] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570.

[8] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968.