An inequality concerning edges of minor weight in convex 3-polytopes
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 81-87

Voir la notice de l'article provenant de la source Library of Science

Let e_ij be the number of edges in a convex 3-polytope joining the vertices of degree i with the vertices of degree j. We prove that for every convex 3-polytope there is 20e_3,3 + 25e_3,4 + 16e_3,5 + 10e_3,6 + 6[2/3]e_3,7 + 5e_3,8 + 2[1/2]e_3,9 + 2e_3,10 + 16[2/3]e_4,4 + 11e_4,5 + 5e_4,6 + 1[2/3]e_4,7 + 5[1/3]e_5,5 + 2e_5,6 ≥ 120; moreover, each coefficient is the best possible. This result brings a final answer to the conjecture raised by B. Grünbaum in 1973.
Keywords: planar graph, convex 3-polytope, normal map
@article{DMGT_1996_16_1_a5,
     author = {Fabrici, Igor and Jendrol', Stanislav},
     title = {An inequality concerning edges of minor weight in convex 3-polytopes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {81--87},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a5/}
}
TY  - JOUR
AU  - Fabrici, Igor
AU  - Jendrol', Stanislav
TI  - An inequality concerning edges of minor weight in convex 3-polytopes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 81
EP  - 87
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a5/
LA  - en
ID  - DMGT_1996_16_1_a5
ER  - 
%0 Journal Article
%A Fabrici, Igor
%A Jendrol', Stanislav
%T An inequality concerning edges of minor weight in convex 3-polytopes
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 81-87
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a5/
%G en
%F DMGT_1996_16_1_a5
Fabrici, Igor; Jendrol', Stanislav. An inequality concerning edges of minor weight in convex 3-polytopes. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 81-87. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a5/