Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1996_16_1_a5, author = {Fabrici, Igor and Jendrol', Stanislav}, title = {An inequality concerning edges of minor weight in convex 3-polytopes}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {81--87}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a5/} }
TY - JOUR AU - Fabrici, Igor AU - Jendrol', Stanislav TI - An inequality concerning edges of minor weight in convex 3-polytopes JO - Discussiones Mathematicae. Graph Theory PY - 1996 SP - 81 EP - 87 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a5/ LA - en ID - DMGT_1996_16_1_a5 ER -
Fabrici, Igor; Jendrol', Stanislav. An inequality concerning edges of minor weight in convex 3-polytopes. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 81-87. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a5/
[1] O. V. Borodin, Computing light edges in planar graphs, in: R. Bodendiek, R. Henn, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990) 137-144.
[2] O. V. Borodin, Structural properties and colorings of plane graphs, Ann. Discrete Math. 51 (1992) 31-37, doi: 10.1016/S0167-5060(08)70602-2.
[3] O. V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142.
[4] O. V. Borodin, Structural properties of planar maps with the minimal degree 5, Math. Nachr. 158 (1992) 109-117, doi: 10.1002/mana.19921580108.
[5] O. V. Borodin and D. P. Sanders, On light edges and triangles in planar graph of minimum degree five, Math. Nachr. 170 (1994) 19-24, doi: 10.1002/mana.19941700103.
[6] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408, doi: 10.1007/BF02764716.
[7] B. Grünbaum, Polytopal graphs, in: D. R. Fulkerson, ed., Studies in Graph Theory, MAA Studies in Mathematics 12 (1975) 201-224.
[8] B. Grünbaum, New views on some old questions of combinatorial geometry, Int. Teorie Combinatorie, Rome, 1973, 1 (1976) 451-468.
[9] B. Grünbaum and G. C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weights of edges, Ann. Discrete Math. 12 (1982) 129-140.
[10] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9.
[11] J. Ivančo and S. Jendrol', On extremal problems concerning weights of edges of graphs, in: Coll. Math. Soc. J. Bolyai, 60. Sets, Graphs and Numbers, Budapest (Hungary) 1991 (North Holland, 1993) 399-410.
[12] E. Jucovič, Strengthening of a theorem about 3-polytopes, Geom. Dedicata 3 (1974) 233-237, doi: 10.1007/BF00183214.
[13] E. Jucovič, Convex 3-polytopes (Veda, Bratislava, 1981, Slovak).
[14] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. as. SAV (Math. Slovaca) 5 (1955) 101-103 (Slovak; Russian summary).
[15] A. Kotzig, From the theory of Euler's polyhedra, Mat. as. (Math. Slovaca) 13 (1963) 20-34 (Russian).
[16] O. Ore, The four-color problem (Academic Press, New York, 1967).
[17] J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296, doi: 10.1007/BF02804013.