Associative graph products and their independence, domination and coloring numbers
Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 53-79

Voir la notice de l'article provenant de la source Library of Science

Associative products are defined using a scheme of Imrich Izbicki [18]. These include the Cartesian, categorical, strong and lexicographic products, as well as others. We examine which product ⊗ and parameter p pairs are multiplicative, that is, p(G⊗H) ≥ p(G)p(H) for all graphs G and H or p(G⊗H) ≤ p(G)p(H) for all graphs G and H. The parameters are related to independence, domination and irredundance. This includes Vizing's conjecture directly, and indirectly the Shannon capacity of a graph and Hedetniemi's coloring conjecture.
Keywords: graph products, independence, domination, irredundance, coloring
@article{DMGT_1996_16_1_a4,
     author = {Nowakowski, Richard and Rall, Douglas},
     title = {Associative graph products and their independence, domination and coloring numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {53--79},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a4/}
}
TY  - JOUR
AU  - Nowakowski, Richard
AU  - Rall, Douglas
TI  - Associative graph products and their independence, domination and coloring numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1996
SP  - 53
EP  - 79
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a4/
LA  - en
ID  - DMGT_1996_16_1_a4
ER  - 
%0 Journal Article
%A Nowakowski, Richard
%A Rall, Douglas
%T Associative graph products and their independence, domination and coloring numbers
%J Discussiones Mathematicae. Graph Theory
%D 1996
%P 53-79
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a4/
%G en
%F DMGT_1996_16_1_a4
Nowakowski, Richard; Rall, Douglas. Associative graph products and their independence, domination and coloring numbers. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 1, pp. 53-79. http://geodesic.mathdoc.fr/item/DMGT_1996_16_1_a4/