Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1995_15_2_a4, author = {Ryj\'a\v{c}ek, Zden\v{e}k and Schiermeyer, Ingo}, title = {The flower conjecture in special classes of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {179--184}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a4/} }
TY - JOUR AU - Ryjáček, Zdeněk AU - Schiermeyer, Ingo TI - The flower conjecture in special classes of graphs JO - Discussiones Mathematicae. Graph Theory PY - 1995 SP - 179 EP - 184 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a4/ LA - en ID - DMGT_1995_15_2_a4 ER -
Ryjáček, Zdeněk; Schiermeyer, Ingo. The flower conjecture in special classes of graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 179-184. http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a4/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
[2] H. Fleischner, The square of every two-connected graph is hamiltonian, J. Combin. Theory (B) 16 (1974) 29-34, doi: 10.1016/0095-8956(74)90091-4.
[3] H. Fleischner, In the squares of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivalent concepts, Monatshefte für Math. 82 (1976) 125-149, doi: 10.1007/BF01305995.
[4] A. Kaneko, Research problem, Discrete Math., (to appear).
[5] A. Kaneko and K. Ota, The flower property implies 1-toughness and the existence of a 2-factor, Manuscript (unpublished).