The flower conjecture in special classes of graphs
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 179-184.

Voir la notice de l'article provenant de la source Library of Science

We say that a spanning eulerian subgraph F ⊂ G is a flower in a graph G if there is a vertex u ∈ V(G) (called the center of F) such that all vertices of G except u are of the degree exactly 2 in F. A graph G has the flower property if every vertex of G is a center of a flower. Kaneko conjectured that G has the flower property if and only if G is hamiltonian. In the present paper we prove this conjecture in several special classes of graphs, among others in squares and in a certain subclass of claw-free graphs.
Keywords: hamiltonian graphs, flower conjecture, square, claw-free graphs
@article{DMGT_1995_15_2_a4,
     author = {Ryj\'a\v{c}ek, Zden\v{e}k and Schiermeyer, Ingo},
     title = {The flower conjecture in special classes of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {179--184},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a4/}
}
TY  - JOUR
AU  - Ryjáček, Zdeněk
AU  - Schiermeyer, Ingo
TI  - The flower conjecture in special classes of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 179
EP  - 184
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a4/
LA  - en
ID  - DMGT_1995_15_2_a4
ER  - 
%0 Journal Article
%A Ryjáček, Zdeněk
%A Schiermeyer, Ingo
%T The flower conjecture in special classes of graphs
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 179-184
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a4/
%G en
%F DMGT_1995_15_2_a4
Ryjáček, Zdeněk; Schiermeyer, Ingo. The flower conjecture in special classes of graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 2, pp. 179-184. http://geodesic.mathdoc.fr/item/DMGT_1995_15_2_a4/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).

[2] H. Fleischner, The square of every two-connected graph is hamiltonian, J. Combin. Theory (B) 16 (1974) 29-34, doi: 10.1016/0095-8956(74)90091-4.

[3] H. Fleischner, In the squares of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivalent concepts, Monatshefte für Math. 82 (1976) 125-149, doi: 10.1007/BF01305995.

[4] A. Kaneko, Research problem, Discrete Math., (to appear).

[5] A. Kaneko and K. Ota, The flower property implies 1-toughness and the existence of a 2-factor, Manuscript (unpublished).