Hamiltonicity in multitriangular graphs
Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 77-88

Voir la notice de l'article provenant de la source Library of Science

The family of 5-valent polyhedral graphs whose faces are all triangles or 3s-gons, s ≥ 9, is shown to contain non-hamiltonian graphs and to have a shortness exponent smaller than one.
Keywords: polyhedral graphs, longest cycles, shortness exponent
@article{DMGT_1995_15_1_a8,
     author = {Owens, Peter and Walther, Hansjoachim},
     title = {Hamiltonicity in multitriangular graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a8/}
}
TY  - JOUR
AU  - Owens, Peter
AU  - Walther, Hansjoachim
TI  - Hamiltonicity in multitriangular graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1995
SP  - 77
EP  - 88
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a8/
LA  - en
ID  - DMGT_1995_15_1_a8
ER  - 
%0 Journal Article
%A Owens, Peter
%A Walther, Hansjoachim
%T Hamiltonicity in multitriangular graphs
%J Discussiones Mathematicae. Graph Theory
%D 1995
%P 77-88
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a8/
%G en
%F DMGT_1995_15_1_a8
Owens, Peter; Walther, Hansjoachim. Hamiltonicity in multitriangular graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a8/