Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1995_15_1_a3, author = {Schiermeyer, Ingo}, title = {Problems remaining {NP-complete} for sparse or dense graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {33--41}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a3/} }
Schiermeyer, Ingo. Problems remaining NP-complete for sparse or dense graphs. Discussiones Mathematicae. Graph Theory, Tome 15 (1995) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/DMGT_1995_15_1_a3/
[1] J. A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada (1980).
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
[3] H. J. Broersma, J. van den Heuvel and H. J. Veldman, A generalization of Ore's Theorem involving neighborhood unions, Discrete Math. 122 (1993) 37-49, doi: 10.1016/0012-365X(93)90285-2.
[4] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[5] E. Flandrin, H. A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Math. 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I.
[6] M. R. Garey and D. S. Johnson, Computers and I, A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[7] J. Kratochvíl, P. Savický and Z. Tuza, One more occurrence of variables makes jump from trivial to NP-complete, SIAM J. Comput. 22 (1993) 203-210, doi: 10.1137/0222015.
[8] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.
[9] I. Schiermeyer, The k-Satisfiability problem remains NP-complete for dense families, Discrete Math. 125 (1994) 343-346, doi: 10.1016/0012-365X(94)90175-9.