Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 383-412.

Voir la notice de l'article provenant de la source Library of Science

The rings considered in this article are commutative with identity which admit at least one nonzero annihilating ideal. Let R be a ring. Let 𝔸(R) denote the set of all annihilating ideals of R and let us denote 𝔸(R)\{(0)} by 𝔸(R)^∗. Recall that the annihilating-ideal graph of R, denoted by 𝔸𝔾(R) is an undirected graph whose vertex set is 𝔸(R)^∗ and distinct vertices I and J are adjacent if and only if IJ = (0). The aim of this article is to generalize some of the known results on the domination number of 𝔸𝔾(R). We also determine the domination number of two spanning supergraphs of 𝔸𝔾(R) in the case of a reduced ring R.
Keywords: annihilating-ideal graph, minimal prime ideal, maximal N-prime of $(0)$, reduced ring, domination number of a graph
@article{DMGAA_2024_44_2_a9,
     author = {Visweswaran, Subramanian},
     title = {Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {383--412},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a9/}
}
TY  - JOUR
AU  - Visweswaran, Subramanian
TI  - Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 383
EP  - 412
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a9/
LA  - en
ID  - DMGAA_2024_44_2_a9
ER  - 
%0 Journal Article
%A Visweswaran, Subramanian
%T Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 383-412
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a9/
%G en
%F DMGAA_2024_44_2_a9
Visweswaran, Subramanian. Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 383-412. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a9/

[1] A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. Comb. Optimization 1 (2) (2016) 117-135. https://doi.org/22049/CCO.2016.13555

[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, Massachusetts, 1969).

[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory (Second Edition) (Universitext Springer, New York, 2012).

[4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1) (1988) 208-226. https://doi.org/10.1016/0021-8693(88)90202-5

[5] M. Behboodi and Z. Rakeei, Annihilating-ideal graph of commutative rings I, J.Algebra Appl. 10 (4) (2011) 727-739. https://doi.org/10.1142/S0219498811004896

[6] M. Behboodi and Z. Rakeei, Annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (4) (2011) 741-753. https://doi.org/10.1142/S0219498811004902

[7] D.E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (3) (1971) 427-433. https://doi.org/10.1090/S0002-9939-1971-0271100-6

[8] R. Gilmer, Multiplicative Ideal Theory (Marcel Dekker, New York, 1972).

[9] R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1) (1980) 13-16. https://doi.org/10.1090/S0002-9939-1980-0560575-6

[10] W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra 72 (1) (1981) 101-114. https://doi.org/10.1016/0021-8693(81)90313-6

[11] W. Heinzer and J. Ohm, On the Noetherian-like rings of E.G. Evans, Proc. Amer. Math. Soc. 34 (1) (1972) 73-74. https://doi.org/10.1090/S0002-9939-1972-0294316-2

[12] I. Kaplansky, Commutative Rings (The University of Chicago Press, Chicago, 1974).

[13] H. B. Mann, Introduction to Algebraic Number Theory (Ohio State University Press, Columbus, Ohio, 1955).

[14] R. Nikandish and H. R. Maimani, Dominating sets of Annihilating-ideal graphs, Electronic Notes in Disc. Math. 45 (2014) 17-22. https://doi.org/10.1016/j.endm.2013.11.005

[15] R. Nikandish, H.R. Maimani and S. Kiani, Domination number in the annihilating-ideal graphs of commutative rings, Publ. de l'Institut Math. Nouvelle serie tome 97 111 (2015) 225-231. https://doi.org/10.2298/PIM140222001N

[16] N. Kh. Tohidi, M.J. Nikmehr and R. Nikandish, On the strongly annihilating-ideal graph of a commutative ring, Discrete Math. Algorithms Appl. 9 (2) (2017) Art ID:1750028 (13 pages). https://doi.org/10.1142/S1793830917500288

[17] S. Visweswaran and Premkumar T. Lalchandani, The exact zero-divisor graph of a reduced ring, Indian J. Pure Appl. Math. 52 (4) (2021) 1123-1144. https://doi.org/10.1007/s13226-021-00086-9