Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_2_a9, author = {Visweswaran, Subramanian}, title = {Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {383--412}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a9/} }
TY - JOUR AU - Visweswaran, Subramanian TI - Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 383 EP - 412 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a9/ LA - en ID - DMGAA_2024_44_2_a9 ER -
%0 Journal Article %A Visweswaran, Subramanian %T Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring %J Discussiones Mathematicae. General Algebra and Applications %D 2024 %P 383-412 %V 44 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a9/ %G en %F DMGAA_2024_44_2_a9
Visweswaran, Subramanian. Some remarks on the dominating sets of the annihilating-ideal graph of a commutative ring. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 383-412. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a9/
[1] A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. Comb. Optimization 1 (2) (2016) 117-135. https://doi.org/22049/CCO.2016.13555
[2] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, Massachusetts, 1969).
[3] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory (Second Edition) (Universitext Springer, New York, 2012).
[4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1) (1988) 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
[5] M. Behboodi and Z. Rakeei, Annihilating-ideal graph of commutative rings I, J.Algebra Appl. 10 (4) (2011) 727-739. https://doi.org/10.1142/S0219498811004896
[6] M. Behboodi and Z. Rakeei, Annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (4) (2011) 741-753. https://doi.org/10.1142/S0219498811004902
[7] D.E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (3) (1971) 427-433. https://doi.org/10.1090/S0002-9939-1971-0271100-6
[8] R. Gilmer, Multiplicative Ideal Theory (Marcel Dekker, New York, 1972).
[9] R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1) (1980) 13-16. https://doi.org/10.1090/S0002-9939-1980-0560575-6
[10] W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra 72 (1) (1981) 101-114. https://doi.org/10.1016/0021-8693(81)90313-6
[11] W. Heinzer and J. Ohm, On the Noetherian-like rings of E.G. Evans, Proc. Amer. Math. Soc. 34 (1) (1972) 73-74. https://doi.org/10.1090/S0002-9939-1972-0294316-2
[12] I. Kaplansky, Commutative Rings (The University of Chicago Press, Chicago, 1974).
[13] H. B. Mann, Introduction to Algebraic Number Theory (Ohio State University Press, Columbus, Ohio, 1955).
[14] R. Nikandish and H. R. Maimani, Dominating sets of Annihilating-ideal graphs, Electronic Notes in Disc. Math. 45 (2014) 17-22. https://doi.org/10.1016/j.endm.2013.11.005
[15] R. Nikandish, H.R. Maimani and S. Kiani, Domination number in the annihilating-ideal graphs of commutative rings, Publ. de l'Institut Math. Nouvelle serie tome 97 111 (2015) 225-231. https://doi.org/10.2298/PIM140222001N
[16] N. Kh. Tohidi, M.J. Nikmehr and R. Nikandish, On the strongly annihilating-ideal graph of a commutative ring, Discrete Math. Algorithms Appl. 9 (2) (2017) Art ID:1750028 (13 pages). https://doi.org/10.1142/S1793830917500288
[17] S. Visweswaran and Premkumar T. Lalchandani, The exact zero-divisor graph of a reduced ring, Indian J. Pure Appl. Math. 52 (4) (2021) 1123-1144. https://doi.org/10.1007/s13226-021-00086-9