Idempotence and regularity of generlized relational hypersubstitutions for algebraic sytems
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 369-382.

Voir la notice de l'article provenant de la source Library of Science

The concept of a generalized relational hypersubstitution for algebraic systems of type (τ,τ') is an extension of the concept of a generalized hypersubstitution for universal algebra of type τ. The set of all generalized relational hypersubstitutions for algebraic systems of type (τ,τ') together with a binary operation defined on the set and its identity forms a monoid. The properties of this structure are expressed by terms and relational terms. In this paper, we study the semigroup properties of the monoid of type ((n),(m)) for arbitrary natural numbers n,m ≥ 2. In particular, we characterize the idempotent as well as regular elements in this submonoid.
Keywords: generalized hypersubstitutions, algebraic systems, idempotent elements, regular elements
@article{DMGAA_2024_44_2_a8,
     author = {Kunama, Pornpimol and Leeratanavalee, Sorasak},
     title = {Idempotence and regularity of generlized relational hypersubstitutions for algebraic sytems},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {369--382},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a8/}
}
TY  - JOUR
AU  - Kunama, Pornpimol
AU  - Leeratanavalee, Sorasak
TI  - Idempotence and regularity of generlized relational hypersubstitutions for algebraic sytems
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 369
EP  - 382
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a8/
LA  - en
ID  - DMGAA_2024_44_2_a8
ER  - 
%0 Journal Article
%A Kunama, Pornpimol
%A Leeratanavalee, Sorasak
%T Idempotence and regularity of generlized relational hypersubstitutions for algebraic sytems
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 369-382
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a8/
%G en
%F DMGAA_2024_44_2_a8
Kunama, Pornpimol; Leeratanavalee, Sorasak. Idempotence and regularity of generlized relational hypersubstitutions for algebraic sytems. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 369-382. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a8/

[1] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra, Verlag Hölder-Pichler-Tempsky, Wien 7 (1991) 97–118.

[2] K. Denecke and D. Phusanga, Hyperformulas and solid algebraic systems, Studia Logica 90 (2008) 263–286. https://doi.org/10.1007/s11225-008-9152-3

[3] S. Leeratanavalee and K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, General Algebra and Applications, Proc. of the "59 th Workshop on General Algebra, "15 th Conference for Young Algebraists Potsdam 2000" (Shaker Verlag, 2000) 135–145.

[4] A.I. Mal'cev, Algebraic Systems (Akademie-Verlag, Berlin, 1973).

[5] D. Phusanga, Derived Algebraic Systems, Ph.D. Thesis (Potsdam, 2013).

[6] D. Phusanga, A. Kamtornpipattanakul, J. Boonkerd and J. Joomwong, Monoid of generalized hypersubstitutions for algebraic systems, Rajabhat Math. J. 1 (2016) 10–23.

[7] D. Phusanga and J. Koppitz, Some varieties of algebraic systems of type ((m),(n)), Asian Eur. J. Math. 12 (2019) 1950005. https://doi.org/10.1142/S1793557119500050

[8] D. Phusanga and J. Koppitz, The monoid of hypersubstitutions for algebraic systems, Announcements of Union of Scientists Silven 33 (2018) 119–126.

[9] W. Taylor, Hyperidentities and Hypervarieties, Aequationes Math. 23 (1981) 111–127.

[10] Sh.L. Wismath, The monoid of hypersubstitutions of type (n), South. Asian Bull. Math. 24 (2000) 115–128. https://doi.org/10.1007/s10012-000-0115-5

[11] W. Wongpinit and S. Leeratanavalee, All maximal idempotent submonoids of HypG(n), Surveys in Mathematics and its Applications 10 (2015) 41–48.