Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_2_a13, author = {Tenkeu Jeufack, Yannick L\'ea and Tenkeu Kembang, Gael and Temgoua Alomo, Etienne Romuald and Kwuida, L\'eonard}, title = {Filters, ideals and power of double {Boolean} algebras}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {451--478}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a13/} }
TY - JOUR AU - Tenkeu Jeufack, Yannick Léa AU - Tenkeu Kembang, Gael AU - Temgoua Alomo, Etienne Romuald AU - Kwuida, Léonard TI - Filters, ideals and power of double Boolean algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 451 EP - 478 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a13/ LA - en ID - DMGAA_2024_44_2_a13 ER -
%0 Journal Article %A Tenkeu Jeufack, Yannick Léa %A Tenkeu Kembang, Gael %A Temgoua Alomo, Etienne Romuald %A Kwuida, Léonard %T Filters, ideals and power of double Boolean algebras %J Discussiones Mathematicae. General Algebra and Applications %D 2024 %P 451-478 %V 44 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a13/ %G en %F DMGAA_2024_44_2_a13
Tenkeu Jeufack, Yannick Léa; Tenkeu Kembang, Gael; Temgoua Alomo, Etienne Romuald; Kwuida, Léonard. Filters, ideals and power of double Boolean algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 451-478. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a13/
[1] B.E. Breckner and C. Sǎcǎrea, A Topological representation of double Boolean lattices, Stud Univ. Babes-Bolyai Math. 64(1) (2019) 11–23.
[2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, 1981).
[3] B. Ganter and R. Wille, Formal Concept Analysis, Mathematical Foundations (Springer, Heildelberg, 1999). https://doi.org/10.1007/978-3-642-59830-2
[4] P. Howlader and M. Banerjee, Remarks on Prime Ideal and Representation Theorem for Double Boolean Algebras, in: CLA 2020 The 15th International Conference on Concept lattices and their Applications, F.J. Valverde-Albacete and M. Trnecka (Ed(s)), CEUR WS 2668 (2020) 83–94.
[5] P. Howlader and M. Banerjee, Topological Representation of Double Boolean Algebras, Algebra Univeralis 84 (15) (2023). https://doi.org/10.1007/s00012-023-00811-x
[6] L. Kwuida, Dicomplemented Lattices. A contextual Generalization of Boolean Algebras (Shaker Verlag, 2004).
[7] L. Kwuida, Prime ideal theorem for double Boolean algebras, Discuss. Math. General Algebra and Appl. 27(2) (2007) 263–275. https://doi.org/10.7151/dmgaa.1130
[8] Y.L.J. Tenkeu, E.R.A. Temgoua and L. Kwuida, Filters, Ideals and Congruences on Double Boolean Algebras, in: Formal Concept Analysis, ICFCA 2021, A. Braud, A. Buzmakov, T. Hanika and F. Le Ber (Ed(s)), (Springer LNAI 12733 2021) 270–280. https://doi.org/10.1007/978-3-030-77867-5_18
[9] B. Vormbrock and R. Wille, Semiconcept and protoconcept algebras: The basic theorem, in: Formal Concept Analysis: Foundations and Applications, B. Ganter, G. Stumme and R. Wille (Ed(s)), (Springer Berlin Heidelberg 2005) 34–48.
[10] R. Wille, Boolean concept Logic, in: Conceptual Structures: Logical Linguistic, and Computational Issues, B. Ganter and G.W. Mineau (Ed(s)), (Springer, Berlin Heildelberg 2000) 317–331.