$\sigma$-filters of distributive lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 261-276.

Voir la notice de l'article provenant de la source Library of Science

The concept of σ-filters is introduced in distributive lattices and studied some properties of these classes of filters. Two sets of equivalent conditions are derived one for every μ-filter to become a σ-filter and the other for every filter to become a σ-filter of a distributive lattice. A one-to-one correspondence is established between the set of all prime σ-filters of a distributive lattice and the set of all prime σ-filters of its quotient lattice with respect to a congruence.
Keywords: prime filter, co-annihilator, $\mu$-filter, O-filter, $\sigma$-filter, pm-lattice
@article{DMGAA_2024_44_2_a1,
     author = {Sambasiva Rao, M.},
     title = {$\sigma$-filters of distributive lattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a1/}
}
TY  - JOUR
AU  - Sambasiva Rao, M.
TI  - $\sigma$-filters of distributive lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 261
EP  - 276
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a1/
LA  - en
ID  - DMGAA_2024_44_2_a1
ER  - 
%0 Journal Article
%A Sambasiva Rao, M.
%T $\sigma$-filters of distributive lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 261-276
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a1/
%G en
%F DMGAA_2024_44_2_a1
Sambasiva Rao, M. $\sigma$-filters of distributive lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a1/

[1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. XXV (Providence, 1967), USA.

[2] S. Burris and H.P. Sankappanavar, A Cource in Universal Algebra (Springer Verlag, 1981).

[3] W.H. Cornish, Normal lattices, J. Austral. Math. Soc. 14 (1972) 200–215. https://doi.org/10.1017/S1446788700010041

[4] W.H. Cornish, Annulets and $\alpha $-ideals in distributive lattices, J. Austral. Math. Soc. 15 (1973) 70–77. https://doi.org/10.1017/S1446788700012775

[5] Y.Y. Dong and X.L. Xin, $\alpha $-filters and prime $\alpha $-filter spaces in residuated lattices, Soft Comput. 23 (10) (2018) 3207–3216. https://doi.org/10.1007/s00500-018-3195-9

[6] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962) 505–514. https://doi.org/10.1215/S0012-7094-62-02951-4

[7] Y.S. Pawar and N.K. Thakare, pm-lattices, Algebra Univ. 7 (1977) 259–263. https://doi.org/10.1007/BF02485435

[8] S. Rasouli, Generalized co-annihilators in residuated lattices An. Univ. Craiova Ser. Mat. Inform. 45 (2)(2018), 190–207. https://doi.org/10.52846/ami.v45i2.827

[9] M. Sambasiva Rao, Normal filters of distributive lattices, Bull. Section of Logic 41 (3) (2012) 131–143.

[10] M. Sambasiva Rao, $O$-filters and minimal prime filters of lattices, Southeast Asian Bull. Math. 39 (2015) 113–121.

[11] M. Sambasiva Rao, $\mu $-filters of distributive lattices, Southeast Asian Bull. Math. 40 (2016) 251–264.

[12] H.P. Sankappanavar, Heyting algebras with dual pseudo-complementation, Pacific J. Math. 117 (2) (1985) 405–415. https://doi.org/10.2140/pjm.1985.117.405

[13] T.P. Speed, Some remarks on a class of distributive lattices, J. Aust. Math. Soc. 9 (1969) 289–296. https://doi.org/10.1017/S1446788700007205

[14] M. Mandelker, Relative annihilators in lattices, Duke Math. J. 37 (1970) 377–386. https://doi.org/10.1215/S0012-7094-70-03748-8