Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_2_a1, author = {Sambasiva Rao, M.}, title = {$\sigma$-filters of distributive lattices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {261--276}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a1/} }
Sambasiva Rao, M. $\sigma$-filters of distributive lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a1/
[1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. XXV (Providence, 1967), USA.
[2] S. Burris and H.P. Sankappanavar, A Cource in Universal Algebra (Springer Verlag, 1981).
[3] W.H. Cornish, Normal lattices, J. Austral. Math. Soc. 14 (1972) 200–215. https://doi.org/10.1017/S1446788700010041
[4] W.H. Cornish, Annulets and $\alpha $-ideals in distributive lattices, J. Austral. Math. Soc. 15 (1973) 70–77. https://doi.org/10.1017/S1446788700012775
[5] Y.Y. Dong and X.L. Xin, $\alpha $-filters and prime $\alpha $-filter spaces in residuated lattices, Soft Comput. 23 (10) (2018) 3207–3216. https://doi.org/10.1007/s00500-018-3195-9
[6] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962) 505–514. https://doi.org/10.1215/S0012-7094-62-02951-4
[7] Y.S. Pawar and N.K. Thakare, pm-lattices, Algebra Univ. 7 (1977) 259–263. https://doi.org/10.1007/BF02485435
[8] S. Rasouli, Generalized co-annihilators in residuated lattices An. Univ. Craiova Ser. Mat. Inform. 45 (2)(2018), 190–207. https://doi.org/10.52846/ami.v45i2.827
[9] M. Sambasiva Rao, Normal filters of distributive lattices, Bull. Section of Logic 41 (3) (2012) 131–143.
[10] M. Sambasiva Rao, $O$-filters and minimal prime filters of lattices, Southeast Asian Bull. Math. 39 (2015) 113–121.
[11] M. Sambasiva Rao, $\mu $-filters of distributive lattices, Southeast Asian Bull. Math. 40 (2016) 251–264.
[12] H.P. Sankappanavar, Heyting algebras with dual pseudo-complementation, Pacific J. Math. 117 (2) (1985) 405–415. https://doi.org/10.2140/pjm.1985.117.405
[13] T.P. Speed, Some remarks on a class of distributive lattices, J. Aust. Math. Soc. 9 (1969) 289–296. https://doi.org/10.1017/S1446788700007205
[14] M. Mandelker, Relative annihilators in lattices, Duke Math. J. 37 (1970) 377–386. https://doi.org/10.1215/S0012-7094-70-03748-8