Some $LCD$ cyclic codes of length $2p$ over finite fields
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 249-259.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we explicitly determine the LCD minimal and maximal cyclic codes of length 2p over finite fields 𝔽_q with p and q are distinct odd primes and ϕ (p)=p-1 is the multiplicative order of q modulo 2p. We show that, every LCD maximal cyclic code is a direct sum of LCD minimal cyclic codes.
Keywords: linear and cyclic codes, LCD codes, reversible codes
@article{DMGAA_2024_44_2_a0,
     author = {Heboub, Lakhdar and Mihoubi, Douadi},
     title = {Some $LCD$ cyclic codes of length $2p$ over finite fields},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {249--259},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/}
}
TY  - JOUR
AU  - Heboub, Lakhdar
AU  - Mihoubi, Douadi
TI  - Some $LCD$ cyclic codes of length $2p$ over finite fields
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 249
EP  - 259
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/
LA  - en
ID  - DMGAA_2024_44_2_a0
ER  - 
%0 Journal Article
%A Heboub, Lakhdar
%A Mihoubi, Douadi
%T Some $LCD$ cyclic codes of length $2p$ over finite fields
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 249-259
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/
%G en
%F DMGAA_2024_44_2_a0
Heboub, Lakhdar; Mihoubi, Douadi. Some $LCD$ cyclic codes of length $2p$ over finite fields. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/

[1] S.K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^{n}$, Finite Fields Appl. 5 (1999) 177–187. https://doi.org/10.1006/ffta.1998.0238

[2] S. Batra and S.K. Arora, Some cyclic codes of length $2p^{n}$, Des. Codes Cryptogr. 61 (1) (2011) 41–69. https://doi.org/10.1007/s10623-010-9438-0

[3] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, Cambridge, 2003).

[4] R. Lidl and G. Pilz, Applied Abstract Algebra (Springer-Verlag, New York, 1998).

[5] S. Ling and C. Xing, Coding Theory, A First Course (Cambridge University Press, 2004).

[6] C. Li, C. Ding and S. Li, $LCD$ cyclic codes over finite fields, IEEE Trans. Inf. Theory 63 (2017) 4344–4356. https://doi.org/10.1109/TIT.2017.2672961

[7] J.L. Massey, Reversible codes, Information and Control 7 (1964) 369–380. https://doi.org/10.1016/S0019-9958(64)90438-3

[8] J.L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992) 337–342. https://doi.org/10.1016/0012-365X(92)90563-U

[9] V. Pless, Introduction to the Theory of Error Correcting Codes (Wiley, New York, 1998).

[10] M. Pruthi and S.K. Arora, Minimal cyclic codes of prime power length, Finite Fields Appl. 3 (1997) 99–113. https://doi.org/10.1006/ffta.1998.0238

[11] X. Yang and J.L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994) 391–393. https://doi.org/10.1016/0012-365X(94)90283-6