Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_2_a0, author = {Heboub, Lakhdar and Mihoubi, Douadi}, title = {Some $LCD$ cyclic codes of length $2p$ over finite fields}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {249--259}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/} }
TY - JOUR AU - Heboub, Lakhdar AU - Mihoubi, Douadi TI - Some $LCD$ cyclic codes of length $2p$ over finite fields JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 249 EP - 259 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/ LA - en ID - DMGAA_2024_44_2_a0 ER -
%0 Journal Article %A Heboub, Lakhdar %A Mihoubi, Douadi %T Some $LCD$ cyclic codes of length $2p$ over finite fields %J Discussiones Mathematicae. General Algebra and Applications %D 2024 %P 249-259 %V 44 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/ %G en %F DMGAA_2024_44_2_a0
Heboub, Lakhdar; Mihoubi, Douadi. Some $LCD$ cyclic codes of length $2p$ over finite fields. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/
[1] S.K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^{n}$, Finite Fields Appl. 5 (1999) 177–187. https://doi.org/10.1006/ffta.1998.0238
[2] S. Batra and S.K. Arora, Some cyclic codes of length $2p^{n}$, Des. Codes Cryptogr. 61 (1) (2011) 41–69. https://doi.org/10.1007/s10623-010-9438-0
[3] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, Cambridge, 2003).
[4] R. Lidl and G. Pilz, Applied Abstract Algebra (Springer-Verlag, New York, 1998).
[5] S. Ling and C. Xing, Coding Theory, A First Course (Cambridge University Press, 2004).
[6] C. Li, C. Ding and S. Li, $LCD$ cyclic codes over finite fields, IEEE Trans. Inf. Theory 63 (2017) 4344–4356. https://doi.org/10.1109/TIT.2017.2672961
[7] J.L. Massey, Reversible codes, Information and Control 7 (1964) 369–380. https://doi.org/10.1016/S0019-9958(64)90438-3
[8] J.L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992) 337–342. https://doi.org/10.1016/0012-365X(92)90563-U
[9] V. Pless, Introduction to the Theory of Error Correcting Codes (Wiley, New York, 1998).
[10] M. Pruthi and S.K. Arora, Minimal cyclic codes of prime power length, Finite Fields Appl. 3 (1997) 99–113. https://doi.org/10.1006/ffta.1998.0238
[11] X. Yang and J.L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126 (1994) 391–393. https://doi.org/10.1016/0012-365X(94)90283-6