Some $LCD$ cyclic codes of length $2p$ over finite fields
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 249-259
Voir la notice de l'article provenant de la source Library of Science
In this paper, we explicitly determine the LCD minimal and maximal cyclic codes of length 2p over finite fields 𝔽_q with p and q are distinct odd primes and ϕ (p)=p-1 is the multiplicative order of q modulo 2p. We show that, every LCD maximal cyclic code is a direct sum of LCD minimal cyclic codes.
Keywords:
linear and cyclic codes, LCD codes, reversible codes
@article{DMGAA_2024_44_2_a0,
author = {Heboub, Lakhdar and Mihoubi, Douadi},
title = {Some $LCD$ cyclic codes of length $2p$ over finite fields},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {249--259},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/}
}
TY - JOUR AU - Heboub, Lakhdar AU - Mihoubi, Douadi TI - Some $LCD$ cyclic codes of length $2p$ over finite fields JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 249 EP - 259 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/ LA - en ID - DMGAA_2024_44_2_a0 ER -
%0 Journal Article %A Heboub, Lakhdar %A Mihoubi, Douadi %T Some $LCD$ cyclic codes of length $2p$ over finite fields %J Discussiones Mathematicae. General Algebra and Applications %D 2024 %P 249-259 %V 44 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/ %G en %F DMGAA_2024_44_2_a0
Heboub, Lakhdar; Mihoubi, Douadi. Some $LCD$ cyclic codes of length $2p$ over finite fields. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_2_a0/