Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_1_a7, author = {Schwab, Emil Daniel}, title = {A bisimple inverse monoid of quadruples of non-negative integers. {The} {M\"obius} function}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {111--126}, publisher = {mathdoc}, volume = {44}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a7/} }
TY - JOUR AU - Schwab, Emil Daniel TI - A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 111 EP - 126 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a7/ LA - en ID - DMGAA_2024_44_1_a7 ER -
%0 Journal Article %A Schwab, Emil Daniel %T A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function %J Discussiones Mathematicae. General Algebra and Applications %D 2024 %P 111-126 %V 44 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a7/ %G en %F DMGAA_2024_44_1_a7
Schwab, Emil Daniel. A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a7/
[1] A. H. Clifford, A class of d-simple semigroups, Amer. J. Math. 15 (1953), 541-556.
[2] P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212 (2008), 2413-2439. https://doi.org/10.1016/j.jpaa.2008.03.027
[3] A. Geroldinger and E. D. Schwab, Sets of lengths in atomic unit-cancellative finitely presented monoids, Colloq. Math. 151 (2018), 171-187. DOI: 10.4064/cm7242-6-2017
[4] P. Haukkanen and E. D. Schwab, A unique factorization in commutative Möbius monoids, Int. J. Number Theory 4 (2008), 549-561. https://doi.org/10.1142/S1793042108001523
[5] P. Leroux, Les catégories de Möbius, Cah. Topol. Géom. Diffé. Catég. 16 (1975), 280-282.
[6] M. Petrich, Inverse semigroups, John Wiley $&$ Sons, New York, 1984.
[7] E. D. Schwab, Möbius monoids and their connection to inverse monoids, Semigroup Forum 90 (2015), 694-720. https://doi.org/10.1007/s00233-014-9666-0
[8] E. D. Schwab, Gauge inverse monoids, Algebra Colloq. 27 (2020), 181-192. https://doi.org/10.1142/S1005386720000152
[9] E. D. Schwab, A note on Möbius functions and a breaking process, J. Algebra Appl. 21 (2022), 2250108. https://doi.org/10.1142/S0219498822501080
[10] E. D. Schwab and G. Schwab, A Möbius arithmetic incidence function, Notes on Number Theory and Discrete Mathematics 21(3) (2015), 27-34.
[11] Y. Shang and L. Wang, A class of regular simple $\omega^{2}$-semigroups I, Advances in Mathematics (China) 42 (2013), 631-643.
[12] R. J. Warne, A class of bisimple inverse semigroups, Pacific J. Math. 18 (1966), 563-577.