A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 111-126.

Voir la notice de l'article provenant de la source Library of Science

The additive monoid of non-negative integers ℕ is isomorphic to the right unit submonoid of the (bisimple) bicyclic semigroup B=ℕ×ℕ. The aim of this note is to construct a similar pair of monoids (B^†=ℕ×ℕ,B^‡=ℕ×ℕ×ℕ×ℕ). The monoid B^† give rise to a bisimple inverse monoid B^‡ of quadruples of non-negative integers like as Warne's 2-dimensional bicyclic semigroup. The links with the monoid of non-negative integers ℕ and with the bicyclic semigroup may turn out to be expedient also for the computation of the corresponding Möbius functions.
Keywords: bisimple inverse monoid, bicyclic semigroup, Möbius function
@article{DMGAA_2024_44_1_a7,
     author = {Schwab, Emil Daniel},
     title = {A bisimple inverse monoid of quadruples of non-negative integers. {The} {M\"obius} function},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {111--126},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a7/}
}
TY  - JOUR
AU  - Schwab, Emil Daniel
TI  - A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 111
EP  - 126
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a7/
LA  - en
ID  - DMGAA_2024_44_1_a7
ER  - 
%0 Journal Article
%A Schwab, Emil Daniel
%T A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 111-126
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a7/
%G en
%F DMGAA_2024_44_1_a7
Schwab, Emil Daniel. A bisimple inverse monoid of quadruples of non-negative integers. The Möbius function. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a7/

[1] A. H. Clifford, A class of d-simple semigroups, Amer. J. Math. 15 (1953), 541-556.

[2] P. Dehornoy, Alternating normal forms for braids and locally Garside monoids, J. Pure Appl. Algebra 212 (2008), 2413-2439. https://doi.org/10.1016/j.jpaa.2008.03.027

[3] A. Geroldinger and E. D. Schwab, Sets of lengths in atomic unit-cancellative finitely presented monoids, Colloq. Math. 151 (2018), 171-187. DOI: 10.4064/cm7242-6-2017

[4] P. Haukkanen and E. D. Schwab, A unique factorization in commutative Möbius monoids, Int. J. Number Theory 4 (2008), 549-561. https://doi.org/10.1142/S1793042108001523

[5] P. Leroux, Les catégories de Möbius, Cah. Topol. Géom. Diffé. Catég. 16 (1975), 280-282.

[6] M. Petrich, Inverse semigroups, John Wiley $&$ Sons, New York, 1984.

[7] E. D. Schwab, Möbius monoids and their connection to inverse monoids, Semigroup Forum 90 (2015), 694-720. https://doi.org/10.1007/s00233-014-9666-0

[8] E. D. Schwab, Gauge inverse monoids, Algebra Colloq. 27 (2020), 181-192. https://doi.org/10.1142/S1005386720000152

[9] E. D. Schwab, A note on Möbius functions and a breaking process, J. Algebra Appl. 21 (2022), 2250108. https://doi.org/10.1142/S0219498822501080

[10] E. D. Schwab and G. Schwab, A Möbius arithmetic incidence function, Notes on Number Theory and Discrete Mathematics 21(3) (2015), 27-34.

[11] Y. Shang and L. Wang, A class of regular simple $\omega^{2}$-semigroups I, Advances in Mathematics (China) 42 (2013), 631-643.

[12] R. J. Warne, A class of bisimple inverse semigroups, Pacific J. Math. 18 (1966), 563-577.