Disjunctive inclusion property in pseudo-complemented distributive lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 233-244.

Voir la notice de l'article provenant de la source Library of Science

Disjunctive inclusion property of several prime ideals and prime filters of pseudo-complemented lattices is studied. Algebraic structures like Boolean algebras and Stone lattices are characterized with the help of the disjunctive inclusion property of prime ideals and prime filters. A set of equivalent conditions is given for every Stone lattice to become a Boolean algebra.
Keywords: disjunctive inclusion property, minimal prime ideal, minimal prime filter, kernel ideal, $\delta $-ideal, Stone lattice, Boolean algebra
@article{DMGAA_2024_44_1_a14,
     author = {Sambasiva Rao, M.},
     title = {Disjunctive inclusion property in pseudo-complemented distributive lattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {233--244},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a14/}
}
TY  - JOUR
AU  - Sambasiva Rao, M.
TI  - Disjunctive inclusion property in pseudo-complemented distributive lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 233
EP  - 244
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a14/
LA  - en
ID  - DMGAA_2024_44_1_a14
ER  - 
%0 Journal Article
%A Sambasiva Rao, M.
%T Disjunctive inclusion property in pseudo-complemented distributive lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 233-244
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a14/
%G en
%F DMGAA_2024_44_1_a14
Sambasiva Rao, M. Disjunctive inclusion property in pseudo-complemented distributive lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 233-244. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a14/

[1] R. Balbes and A. Horn, Stone lattices, Duke Math. J. 37 (1970) 537–545.

[2] G. Birkhoff, Lattice theory (Amer. Math. Soc. Colloq. XXV, Providence, USA, 1967).

[3] T.S. Blyth, Ideals and filters of pseudo-complemented semi-lattices, Proc. Edin. Math. Soc. 23 (1980) 301–316. https://doi.org/10.1017/S0013091500003850

[4] I. Chajda, R. Halaˇs and J. K¨uhr, Semilattice structures (Heldermann Verlog, Germany, 2007).

[5] S.A. Celani, σ-ideals in distributive pseudo-complemented residuate lattices, Soft Computing 19(7) (2015) 1773–1777.https://doi.org/10.1007/s00500-015-1592-x

[6] W.H. Cornish, Congruences on distributive pseudo-complemented lattices, Bull. Austral. Math. Soc. 8 (1973) 161–179. https://doi.org/10.1017/S0004972700042404

[7] W.H. Cornish, O-ideals, congruences and sheaf representation of distributive lattices, Rev. Roum. Math. Pures. et Appl. 22 (1977) 1059–1067.

[8] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962) 505–514. https://doi.org/10.1215/S0012-7094-62-02951-4

[9] G. Gratzer, General lattice theory, Academic press (New York, San Francisco, USA, 1978).

[10] M. Sambasiva Rao, δ-ideals in pseudo-complemented distributive lattices, Archivum Mathematicum 48(2) (2012) 97–105. https://doi.org/10.5817/AM2012-2-97

[11] M. Sambasiva Rao, Median prime ideals of pseudo-complemented distributive lattices, Archivum Mathematicum 58(4) (2022) 125–136. https://doi.org/10.5817/AM2022-4-213

[12] T.P. Speed, On Stone lattices, J. Aust. Math. Soc. 9(3–4) (1969) 297–307. https://doi.org/10.1017/S1446788700007217

[13] M.H. Stone, A theory of representations for Boolean algebras, Tran. Amer. Math. Soc. 40 (1936) 37–111. https://doi.org/10.2307/1989664