Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2024_44_1_a14, author = {Sambasiva Rao, M.}, title = {Disjunctive inclusion property in pseudo-complemented distributive lattices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {233--244}, publisher = {mathdoc}, volume = {44}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a14/} }
TY - JOUR AU - Sambasiva Rao, M. TI - Disjunctive inclusion property in pseudo-complemented distributive lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2024 SP - 233 EP - 244 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a14/ LA - en ID - DMGAA_2024_44_1_a14 ER -
%0 Journal Article %A Sambasiva Rao, M. %T Disjunctive inclusion property in pseudo-complemented distributive lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2024 %P 233-244 %V 44 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a14/ %G en %F DMGAA_2024_44_1_a14
Sambasiva Rao, M. Disjunctive inclusion property in pseudo-complemented distributive lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 233-244. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a14/
[1] R. Balbes and A. Horn, Stone lattices, Duke Math. J. 37 (1970) 537–545.
[2] G. Birkhoff, Lattice theory (Amer. Math. Soc. Colloq. XXV, Providence, USA, 1967).
[3] T.S. Blyth, Ideals and filters of pseudo-complemented semi-lattices, Proc. Edin. Math. Soc. 23 (1980) 301–316. https://doi.org/10.1017/S0013091500003850
[4] I. Chajda, R. Halaˇs and J. K¨uhr, Semilattice structures (Heldermann Verlog, Germany, 2007).
[5] S.A. Celani, σ-ideals in distributive pseudo-complemented residuate lattices, Soft Computing 19(7) (2015) 1773–1777.https://doi.org/10.1007/s00500-015-1592-x
[6] W.H. Cornish, Congruences on distributive pseudo-complemented lattices, Bull. Austral. Math. Soc. 8 (1973) 161–179. https://doi.org/10.1017/S0004972700042404
[7] W.H. Cornish, O-ideals, congruences and sheaf representation of distributive lattices, Rev. Roum. Math. Pures. et Appl. 22 (1977) 1059–1067.
[8] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962) 505–514. https://doi.org/10.1215/S0012-7094-62-02951-4
[9] G. Gratzer, General lattice theory, Academic press (New York, San Francisco, USA, 1978).
[10] M. Sambasiva Rao, δ-ideals in pseudo-complemented distributive lattices, Archivum Mathematicum 48(2) (2012) 97–105. https://doi.org/10.5817/AM2012-2-97
[11] M. Sambasiva Rao, Median prime ideals of pseudo-complemented distributive lattices, Archivum Mathematicum 58(4) (2022) 125–136. https://doi.org/10.5817/AM2022-4-213
[12] T.P. Speed, On Stone lattices, J. Aust. Math. Soc. 9(3–4) (1969) 297–307. https://doi.org/10.1017/S1446788700007217
[13] M.H. Stone, A theory of representations for Boolean algebras, Tran. Amer. Math. Soc. 40 (1936) 37–111. https://doi.org/10.2307/1989664