Set-theoretical solutions for the Yang-Baxter equation in triangle algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 15-42.

Voir la notice de l'article provenant de la source Library of Science

In this study, we give some fundamental set-theoretical solutions of Yang-Baxter equation in triangle algebras and state triangle algebras. We prove that the necessary and sufficient condition for certain mappings to be set-theoretical solutions of Yang-Baxter equation on these structures is that these structures must be also MTL-(state) triangle algebras, BL-(state) triangle algebras or RL-(state) triangle algebras. In accordance with these, we recursively introduce new operators N and 𝔐. Then, we define the notion of formula on triangle algebra as a classical logic structure. Moreover, we state the relationship of transferring of set-theoretical solutions of Yang-Baxter equation among (MTL,BL, RL)-(state) triangle algebras and state (MTL,BL, RL)-(state) triangle algebras. Then, we give a scheme to explain clearly these relations.
Keywords: triangle algebra, Yang-Baxter equation, set-theoretical solution, residuated lattice, state operator, (MTL,BL, RL)-triangle algebras
@article{DMGAA_2024_44_1_a1,
     author = {Senturk, Ibrahim and Oner, Tahsin and Borumand Saeid, Arsham},
     title = {Set-theoretical solutions for the {Yang-Baxter} equation in triangle algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {15--42},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a1/}
}
TY  - JOUR
AU  - Senturk, Ibrahim
AU  - Oner, Tahsin
AU  - Borumand Saeid, Arsham
TI  - Set-theoretical solutions for the Yang-Baxter equation in triangle algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2024
SP  - 15
EP  - 42
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a1/
LA  - en
ID  - DMGAA_2024_44_1_a1
ER  - 
%0 Journal Article
%A Senturk, Ibrahim
%A Oner, Tahsin
%A Borumand Saeid, Arsham
%T Set-theoretical solutions for the Yang-Baxter equation in triangle algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2024
%P 15-42
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a1/
%G en
%F DMGAA_2024_44_1_a1
Senturk, Ibrahim; Oner, Tahsin; Borumand Saeid, Arsham. Set-theoretical solutions for the Yang-Baxter equation in triangle algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 44 (2024) no. 1, pp. 15-42. http://geodesic.mathdoc.fr/item/DMGAA_2024_44_1_a1/

[1] C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967) 1312–1315. https://doi.org/10.1103/PhysRevLett.19.1312

[2] R.J. Baxter, Partition function for the eight-vertex lattice model, Ann. Phys. 70 (1972) 193–228. https://doi.org/10.1016/0003-4916(72)90335-1

[3] R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, UK, 1982).

[4] R. Berceanu Barbu, F.F. Nichita and C. Popescu, Algebra structures arising from Yang-Baxter systems, Commun. Alg. 41(12) (2013) 4442–4452. https://doi.org/10.1080/00927872.2012.703736

[5] T. Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups, Adv. Math. 338 (2018) 649–701. https://doi.org/10.1016/j.aim.2018.09.005

[6] A.A. Belavin and V.G. Drinfeld, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Its Appl. 16(3) (1982) 159–180. https://doi.org/10.1007/BF01081585

[7] I. Senturk and ŞN. Bozdağ, Geometrical approach on set-theoretical solutions of Yang-Baxter equation in Lie algebras, Malaya J. Mat. 10(3) (2022) 237–256. https://doi.org/10.26637/mjm1003/006

[8] S.H. Wang and T.S. Ma, Singular solutions to the quantum Yang-Baxter equations, Comm. Alg. 37(1) (2009) 296–316. https://doi.org/10.1080/00927870802243911

[9] F.F. Nichita and D. Parashar, Spectral-parameter dependent Yang-Baxter operators and Yang-Baxter systems from algebra structures, Comm. Alg. 34 (2006) 2713–2726. https://doi.org/10.1080/00927870600651661

[10] T. Oner, I. Senturk and G. Oner, An independent set of axioms of MV-algebras and solutions of the set-theoretical Yang-Baxter equation, Axioms 6(3) (2017) 1–17. https://doi.org/10.3390/axioms6030017

[11] G. Massuyeau and F.F. Nichita, Yang-Baxter operators arising from algebra structures and the Alexander polynomial of knots, Comm. Alg. 33(7) (2005) 2375–2385. https://doi.org/10.1081/AGB-200063495

[12] B. Van Gasse, C. Cornelis, G. Deschrijver and E.E. Kerre, Triangle algebras: A formal logic approach to interval-valued residuated lattices, Fuzzy Sets and Syst. 159(9) (2008) 1042–1060. https://doi.org/10.1016/j.fss.2007.09.003

[13] Piciu D. Algebra of Fuzzy Logic, Editura Universiteria, University Craivo, 2007.

[14] B. Van Gasse, G. Deschrijver, C. Cornelis and E.E. Kerre, Filters of residuated lattices and triangle algebras, Inform. Sci. 180(16) (2010) 3006–3020. https://doi.org/10.1016/j.ins.2010.04.010

[15] S. Zahiri, A. Borumand Saeid and E. Eslami, On maximal filters in triangle algebras, J. Int. $&$ Fuzzy Syst. 30(2) (2016) 1181–1193. https://doi.org/10.3233/IFS-151842

[16] S. Zahiri and A. Borumand Saeid, The role of states in triangle algebras, Iranian J. Fuzzy Syst. 17(3) (2020) 163–176. https://doi.org/10.22111/IJFS.2020.5356

[17] D. Mundici, Averaging the truth-value in Łukasiewicz logic, Studia Logica 55(1) (1995) 113–127. https://doi.org/10.1007/BF01053035

[18] T. Flaminio and F. Montagna, An Algebraic Approach to States on MV-algebras (EUSFLAT Conf. (2), 2007).

[19] E. Turunen, J. Mertanen and G. Deschrijver, States on semi-divisible residuated lattices, Soft Computing 12 (2008) 353–357. https://doi.org/10.1007/s00500-007-0182-y

[20] B. Van Gasse, C. Cornelis, G. Deschrijver and E.E. Kerre, A characterization of interval-valued residuated lattices, Int. J. Approximate Reason. 49(2) (2008) 478–487. https://doi.org/10.1016/j.ijar.2008.04.006

[21] F.F. Nichita, Yang-Baxter equations, Comp. Meth. Appl. Axioms 4(4) (2015) 423–435. https://doi.org/10.3390/axioms4040423