Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_2_a6, author = {Rao, M. Murali Krishna and Rafi, Noorbhasha and Kumar Kona, Rajendra}, title = {A study on ideal elements in ordered $\Gamma$-semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {249--261}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a6/} }
TY - JOUR AU - Rao, M. Murali Krishna AU - Rafi, Noorbhasha AU - Kumar Kona, Rajendra TI - A study on ideal elements in ordered $\Gamma$-semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 249 EP - 261 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a6/ LA - en ID - DMGAA_2023_43_2_a6 ER -
%0 Journal Article %A Rao, M. Murali Krishna %A Rafi, Noorbhasha %A Kumar Kona, Rajendra %T A study on ideal elements in ordered $\Gamma$-semirings %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 249-261 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a6/ %G en %F DMGAA_2023_43_2_a6
Rao, M. Murali Krishna; Rafi, Noorbhasha; Kumar Kona, Rajendra. A study on ideal elements in ordered $\Gamma$-semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 249-261. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a6/
[1] P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Sco. 21 (1969) 412–416.
[2] A.H. Cllliford and G.B. Preston, The Algebraic Theory of Semigroups Vol. I, Amer. Math. Soc. Math. Surveys 7 (Providence, RI, USA, 1961).
[3] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952) 624–625.
[4] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Noti 5 (1958) 321.
[5] K. Iseki, Quasi-ideals in semirings without zero, Proc. Japan Acad. 34 (1958) 79–84.
[6] K. Iseki, Ideal theory of semiring, Proc. Japan Acad. 32 (1956) 554–559.
[7] K. Iseki, Ideal in semirings, Proc. Japan Acad. 34 (1958) 29–31.
[8] K. Izuka, On the Jacobson radical of a semiring, Tohoku Math. J. 11 (2) (1959) 409–421.
[9] R.D. Jagatap and Y.S. Pawar, Quasi-ideals and minimal quasi-ideals in $Γ$-semirings, Novi Sad J. Math. 39 (2) (2009) 79–87.
[10] N. Kehayopulu, Interior ideals and interior ideal elements in ordered semigroups, Pure Math. Appl. 2 (3)(1999) 407–409.
[11] S. Lajos and F.A. Szasz, On the bi-ideals in associative ring, Proc. Japan Acad. 46 (1970) 505–507.
[12] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad. 45 (1969) 710–712.
[13] S. Lajos, $(m;k;n)$-ideals in semigroups, in: Notes on Semigroups II, Karl Marx Univ. Econ. Dept. Math. Budapest (1976) (1) 12–19.
[14] H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932) 329–338.
[15] G. Lister, Ternary rings, Trans. Amer. Math. Soc. 154 (1971) 37–55. https://doi.org/10.2307/1995425
[16] M.M.K. Rao, $Γ$-semiring with identity, Discuss. Math. General Alg. and Appl. 37 (2017) 189–207. https://doi.org/10.7151/dmgaa.1276
[17] M.M.K. Rao, The Jacobson radical of $Γ$-semiring, South. Asian Bull. Math. 23 (1999) 127–134.
[18] M.M.K. Rao and B. Venkateswarlu, Regular $Γ$-incline and field $Γ$-semiring, Novi Sad J. Math. 19 (2015) 155–171. emis.ams.org/journals/NSJOM/Papers/45-2 /NSJOM-45-2-155-171.pdf.
[19] M.M.K. Rao, bi-interior ideals in semigroups, Discuss. Math. General Alg. and Appl. 38 (2018) 69–78. https://doi.org/10.7151/dmgaa.1283
[20] M.M.K. Rao, bi-interior ideals in $Γ$-semirings, Discuss. Math. General Alg. and Appl. 38 (2) (2018) 239–254. https://doi.org/10.7151/dmgaa.1283
[21] M.M.K. Rao, Ideals in ordered $Γ$-semirings, Discuss. Math. General Alg. and Appl. 38 (2018) 47–68. https://doi.org/10.7151/dmgaa.1284
[22] M.M.K. Rao, A study of generalization of bi- ideal, quasi- ideal and interior ideal of semigroup, Math. Morovica 22 (2) (2018) 103–115. https://doi.org/10.5937/MatMor1802103M
[23] M.M.K. Rao, A study of bi-quasi-interior ideal as a new generalization of ideal of generalization of semiring, Bull. Int. Math. Virtual Inst. 8 (2018) 519–535. https://doi.org/10.7251/JIMVI1801019R
[24] M.M.K. Rao, A study of quasi-interior ideal of semiring, Bull. Int. Math. Virtual Inst. 2 (2019) 287–300. https://doi.org/10.7251/BIMVI1902287M
[25] M.M.K. Rao, Left bi-quasi ideals of semirings, Bull. Int. Math. Virtual Inst. 8 (2018) 45–53. https://doi.org/10.7251/BIMVI1801045R
[26] M.M.K. Rao, B. Venkateswarlu and N. Rafi, Left bi-quasi-ideals of $Γ$-semirings, Asia Pacific J. Math. 4 (2) (2017) 144–153.
[27] M.M.K. Rao, B. Venkateswarlu and N. Rafi, On r-ideals of $Γ$-inclines, Asia Pacific J. Math. 5 (2) (2019) 208–218. https://doi.org/10.28924/APJM/6-6
[28] M.M.K. Rao, Bi-quasi-ideals and fuzzy bi-quasi ideals of $Γ$- semigroups, Bull. Int. Math. Virtual Inst. 7 (2) (2017) 231–242. imvibl.org /JOURNALS / BULLETIN.
[29] M.M.K. Rao, $Γ$-semirings-I, South. Asian Bull. Math. 19 (1) (1995) 49–54.
[30] M.M.K. Rao, B. Venkateswarlu and N. Rafi, Fuzzy $r$-ideals in $Γ$-incline, Ann. Fuzzy Math. Inform. 13 (2) (2019) 253–276. https://doi.org/10.30948/afmi.2019.17.3.247
[31] N. Nobusawa, On a generalization of the ring theory, Osaka. J. Math. 1 (1964) 81–89. ir.library.osaka-u.ac.jp/dspace/bitstream/11094/12354/1/ojm01-01-08.pdf.
[32] M.K. Sen, On $Γ$-semigroup, in: Proc. of International Conference of algebra and its application (Decker Publicaiton, New York, 1981) 301–308.
[33] A.M. Shabir and A. Batod, A note on quasi ideal in semirings, South. Asian Bull. Math. 7 (2004) 923–928.
[34] O. Steinfeld, Uher die quasi ideals, Von halbgruppend, Publ. Math. Debrecen 4 (1956) 262–275.
[35] G. Szasz, Interior ideals in semigroups, in: Notes on semigroups IV, KarlMarx Univ. Econ. Dept. Math. Budapest 5 (1977) 1–7.
[36] G. Szasz, Remark on interior ideals of semigroups, Studia Scient. Math. Hung. 16 (1981) 61–63.
[37] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.) 40 (1934) 914–920. https://doi.org/10.1090/S0002-9904-1934-06003-8