The pre-period of the glued sum of finite modular lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 223-231
Voir la notice de l'article provenant de la source Library of Science
The notion of a pre-period of an algebra 𝐀 is defined by means of the notion of the pre-period λ(f) of a monounary algebra 〈 A;f〉: it is determined by sup{λ(f)| f is an endomorphism of 𝐀}. In this paper we focus on the pre-period of a finite modular lattice. The main result is that the pre-period of any finite modular lattice is less than or equal to the length of the lattice; also, necessary and sufficient conditions under which the pre-period of the glued sum is equal to the length of the lattice, are shown. Moreover, we show the triangle inequality of the pre-period of the glued sum.
Keywords:
ordinal sum, glued sum, modular lattice, endomorphism, pre-period, connected unary operation
@article{DMGAA_2023_43_2_a3,
author = {Charoenpol, Aveya and Chotwattakawanit, Udom},
title = {The pre-period of the glued sum of finite modular lattices},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {223--231},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a3/}
}
TY - JOUR AU - Charoenpol, Aveya AU - Chotwattakawanit, Udom TI - The pre-period of the glued sum of finite modular lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 223 EP - 231 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a3/ LA - en ID - DMGAA_2023_43_2_a3 ER -
%0 Journal Article %A Charoenpol, Aveya %A Chotwattakawanit, Udom %T The pre-period of the glued sum of finite modular lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 223-231 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a3/ %G en %F DMGAA_2023_43_2_a3
Charoenpol, Aveya; Chotwattakawanit, Udom. The pre-period of the glued sum of finite modular lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 223-231. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a3/