Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_2_a3, author = {Charoenpol, Aveya and Chotwattakawanit, Udom}, title = {The pre-period of the glued sum of finite modular lattices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {223--231}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a3/} }
TY - JOUR AU - Charoenpol, Aveya AU - Chotwattakawanit, Udom TI - The pre-period of the glued sum of finite modular lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 223 EP - 231 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a3/ LA - en ID - DMGAA_2023_43_2_a3 ER -
%0 Journal Article %A Charoenpol, Aveya %A Chotwattakawanit, Udom %T The pre-period of the glued sum of finite modular lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 223-231 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a3/ %G en %F DMGAA_2023_43_2_a3
Charoenpol, Aveya; Chotwattakawanit, Udom. The pre-period of the glued sum of finite modular lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 223-231. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a3/
[1] U. Chotwattakawanit and A. Charoenpol, A pre-period of a finite distributive lattice, Discuss. Math. General Alg. Appl. (to appear).
[2] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science (Chapman & Hall, CRC Press, Boca Raton, London, New York, Washington DC, 2002).
[3] E. Halukova, Strong endomorphism kernel property for monounary algebras, Math. Bohemica 143 (2017) 1–11.
[4] E. Halukova, Some monounary algebras with EKP, Math. Bohemica 145 (2019) 1–14. https://doi.org/10.21136/MB.2017.0056-16
[5] D. Jakubikova-Studenovska, Homomorphism order of connected monounary algebras, Order 38 (2021) 257–269. https://doi.org/10.1007/s11083-020-09539-y
[6] D. Jakubikova-Studenovska and J. Pocs, Monounary algebras (P.J. Safarik Univ. Kosice, Kosice, 2009).
[7] D. Jakubikova-Studenovska and K. Potpinkova, The endomorphism spectrum of a monounary algebra, Math. Slovaca 64 (2014) 675–690. https://doi.org/10.2478/s12175-014-0233-7
[8] B. Jonsson, Topics in Universal Algebra (Lecture Notes in Mathematics 250, Springer, Berlin, 1972).
[9] M. Novotna, O. Kopeek and J. Chvalina, Homomorphic Transformations: Why and Possible Ways to How (Masaryk University, Brno, 2012).
[10] J. Pitkethly and B. Davey, Dualisability: Unary Algebras and Beyond (Advances in Mathematics 9, Springer, New York, 2005).
[11] B.V. Popov and O.V. Kovaleva, On a characterization of monounary algebras by their endomorphism semigroups, Semigroup Forum 73 (2006) 444–456. https://doi.org/10.1007/s00233-006-0635-0
[12] I. Pozdnyakova, Semigroups of endomorphisms of some infinite monounary algebras, J. Math. Sci. 190 (2013). https://doi.org/10.1007/s10958-013-1278-9
[13] C. Ratanaprasert and K. Denecke, Unary operations with long pre-periods, Discrete Math. 308 (2008) 4998–5005. https://doi.org/10.1142/S1793557109000170
[14] H. Yoeli, Subdirectly irreducible unary algebra, Math. Monthly 74 (1967) 957–960. https://doi.org/10.2307/2315275
[15] D. Zupnik, Cayley functions, Semigroup Forum 3 (1972) 349–358. https://doi.org/10.1007/BF02572972