On the structure space of prime congruences on semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 389-401.

Voir la notice de l'article provenant de la source Library of Science

In the present paper, we study some of the topological properties of the space of prime congruences on a semiring endowed with the hull kernel topology.
Keywords: semiring, congruence, prime congruence, hull kernel topology, structure space
@article{DMGAA_2023_43_2_a14,
     author = {Basu, Soumi and Mukherjee (Goswami), Sarbani and Chakraborty, Kamalika},
     title = {On the structure space of prime congruences on semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {389--401},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a14/}
}
TY  - JOUR
AU  - Basu, Soumi
AU  - Mukherjee (Goswami), Sarbani
AU  - Chakraborty, Kamalika
TI  - On the structure space of prime congruences on semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 389
EP  - 401
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a14/
LA  - en
ID  - DMGAA_2023_43_2_a14
ER  - 
%0 Journal Article
%A Basu, Soumi
%A Mukherjee (Goswami), Sarbani
%A Chakraborty, Kamalika
%T On the structure space of prime congruences on semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 389-401
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a14/
%G en
%F DMGAA_2023_43_2_a14
Basu, Soumi; Mukherjee (Goswami), Sarbani; Chakraborty, Kamalika. On the structure space of prime congruences on semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 389-401. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a14/

[1] S.K. Acharyya, K.C. Chattopadhyay and G.G. Ray, Hemirings, congruences and the Stone–$\check{C}$ech compactification, Bull. Belg. Math. Soc. Simon Stevin 67 (1993) 21–35.

[2] M.R. Adhikari and M.K. Das, Structure spaces of semirings, Bull. Cal. Math. Soc. 86 (1994) 313–317.

[3] J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, 1999). https://doi.org/10.1007/978-94-015-9333-5

[4] S. Han, $k$-Congruences on semirings, (2016) arXiv: 1607.00099v1[math.RA]. https://doi.org/10.48550/arXiv.1607.00099

[5] S. Han, $k$-Congruences and the Zariski topology in semirings, Hacettepe J. Math. Stat. 50 (3) (2021) 699–709. https://doi.org/10.15672/hujms.614688

[6] K. Is$\acute{e}$ki, Notes on topological spaces, V. On structure spaces of semiring, Proc. Japan Acad. 32 (1956) 426–429. https://doi.org/10.3792/pja/1195525309

[7] K. Is$\acute{e}$ki and Y. Miyanaga, Notes on topological spaces. III. On space of maximal ideals of semiring, Proc. Japan Acad. 32 (1956) 325–328. https://doi.org/10.3792/pja/1195525375

[8] N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc. Nat. Acad. Sci. U.S.A 31 (1945) 333–338. https://doi.org/10.1073/pnas.31.10.333

[9] R.D. Jagatap and Y.S. Pawar, Structure space of prime ideals of $Γ$-semirings, Palestine J. Math. 5 (2016) 166–170.

[10] D. Joo and K. Mincheva, Prime congruences of idempotent semirings and a Nullstellensatz for tropical polynomials, Selecta Mathematica 24 (3) (2017) arXiv:1408.3817. https://doi.org/10.1007/s00029-017-0322-x

[11] P. Lescot, Absolute Algebra III-The saturated spectrum, Journal of Pure and Applied Algebra 216 (7) (2012) 1004–1015. https://doi.org/10.48550/arXiv.1310.8399

[12] K. Mincheva, Semiring Congruences and Tropical Geometry, Ph.D. Thesis (Johns Hopkins University, 2016).

[13] M.K. Sen and M.R. Adhikari, On maximal $k$-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993) 699–703. https://doi.org/10.1090/S0002-9939-1993-1132423-6

[14] M.K. Sen and S. Bandyopadhyay, Structure Space of a Semi Algebra over a Hemiring, Kyungpook Math. J. 33 (1) (1993) 25–36.

[15] F.G. Simmons, Introduction to Topology and Modern Analysis (Tata McGraw-Hill Company Limited, 2004).

[16] H.S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914–920. https://doi.org/10.1090/s0002-9904-1934-06003-8