Strongly $E$-inversive semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 375-387.

Voir la notice de l'article provenant de la source Library of Science

E-inversive semigroups have been the topic of research for many years. Properties of E-inversive semigroups were studied by Edward [1], Mitsch [2] and many others. In , Ghosh defined E-inversive semiring and studied its properties. According to him, an additively commutative semiring is called E-inversive semiring if and only if its additive reduct is an E-inversive semigroup. In this paper, we define strongly E-inversive semiring and study its properties.
Keywords: E-inversive semigroup, E-inversive semiring, strongly E-inversive semiring, skew-ring
@article{DMGAA_2023_43_2_a13,
     author = {Bag, Moumita},
     title = {Strongly $E$-inversive semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {375--387},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a13/}
}
TY  - JOUR
AU  - Bag, Moumita
TI  - Strongly $E$-inversive semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 375
EP  - 387
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a13/
LA  - en
ID  - DMGAA_2023_43_2_a13
ER  - 
%0 Journal Article
%A Bag, Moumita
%T Strongly $E$-inversive semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 375-387
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a13/
%G en
%F DMGAA_2023_43_2_a13
Bag, Moumita. Strongly $E$-inversive semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 375-387. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a13/

[1] P.M. Edwards, E-conjugate semigroups and group congruences on E-inversive semigroups, International Journal of Algebra 6(2) (2012) 73–80.

[2] S. Ghosh, A characterization of semirings which are subdirect products of a distributive lattice and a ring, Semigroup Forum 59 (1999) 106–120. https://doi.org/10.1007/pl00005999

[3] M.P. Grillet, Semirings with a completely simple additive semigroup, J. Austral. Math. Soc. (Series A) 20 (1975) 257–267. https://doi.org/10.1017/s1446788700020607

[4] T.E. Hall and W.D. Munn, The hypercore of a semigroup, Proc. Edinburgh Math. Soc. Vol. 28 (1985) 107–112. https://doi.org/10.1017/s0013091500003242

[5] J.M. Howie, Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).

[6] G. Lallement and M. Petrich, Decompositions I-matricielles d'un demigroupe, J. Math. Pures Appl. 45 (1966) 67–117.

[7] S.K. Maity and R. Ghosh, On quasi completely regular semirings, Semigroup Forum 89 (2014) 422–430. https://doi.org/10.1007/s00233-014-9579-y

[8] S.W. Margolis and J.E. Pin, Inverse semigroups and extension of groups by semilattices, J. Algebra 110 (1987) 277–298. https://doi.org/10.1016/0021-8693(87)90046-9

[9] H. Mitsch, Subdirect products of E-inversive semigroups, J. Austral. Math. Soc. (Series A) 48 (1990) 66–78. https://doi.org/10.1017/s1446788700035199

[10] M. Petrich and N.R. Reilly, Completely Regular Semigroups (Wiley, New York, 1999).

[11] M. Petrich and N.R. Reilly, E-unitary covers and varieties of inverse semigroups, Acta Sci. Math. 46 (1983) 59–72.

[12] M.K. Sen, S.K. Maity and K.P. Shum, On completely regular semirings, Bull. Cal. Math. Soc. 98(4) (2006) 319–328.

[13] G. Thierrin, Demigroupes inverses et rectangularies, Bull. Cl. Sci. Acad. Roy. Belgique 41 (1955) 83–92.