Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_2_a11, author = {Kumduang, Thodsaporn and Leeratanavalee, Sorasak}, title = {The partial many-sorted algebras of terms and formulas with fixed variables count}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {339--362}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a11/} }
TY - JOUR AU - Kumduang, Thodsaporn AU - Leeratanavalee, Sorasak TI - The partial many-sorted algebras of terms and formulas with fixed variables count JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 339 EP - 362 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a11/ LA - en ID - DMGAA_2023_43_2_a11 ER -
%0 Journal Article %A Kumduang, Thodsaporn %A Leeratanavalee, Sorasak %T The partial many-sorted algebras of terms and formulas with fixed variables count %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 339-362 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a11/ %G en %F DMGAA_2023_43_2_a11
Kumduang, Thodsaporn; Leeratanavalee, Sorasak. The partial many-sorted algebras of terms and formulas with fixed variables count. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 339-362. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a11/
[1] E. Aichinger, N. Mudrinski and J. Oprsal, Complexity of term representations of finitary functions, Int. J. Algebra Comput. 28 (2018) 1101–1118. https://doi.org/10.1142/S0218196718500480
[2] S. Bozapalidis, Z. Flap and G. Rahonis, Equational tree transformations, Theoret. Comput. Sci. 412 (99) (2011) 3676–3692. https://doi.org/10.1016/j.tcs.2011.03.028
[3] P. Burmeister, A model theoretic oriented approach to partial algebras, in: Introduction to Theory and Application of Partial Algebras, Mathematical Research 32 (Akademie Verlag, 1986).
[4] S. Busaman, Unitary Menger algebra of C-quantifier free formulas of type $(\tau_n,2)$, Asian-Eur. J. Math. 14 (4) (2021) 2150050. https://doi.org/10.1142/S1793557121500509
[5] N. Chansuriya, All maximal idempotent submonoids of generalized cohypersubstitutions of type $\tau=(2)$, Discuss. Math. Gen. Algebra Appl. 41 (1) (2021) 45–46. https://doi.org/10.7151/dmgaa.1351
[6] J. Crulis, Multi-algebras from the viewpoint of algebraic logic, Algebra Discrete Math. 1 (2003) 20–31.
[7] K. Denecke, Partial clones, Asian-Eur. J. Math. 13 (8) (2020) 2050161. https://doi.org/10.1142/S1793557120501612
[8] K. Denecke, The partial clone of linear formulas, Sib. Math J. 60 (2019) 572–584. https://doi.org/10.1134/S0037446619040037
[9] K. Denecke, The partial clone of linear terms, Sib. Math J. 57 (4) (2016) 589–598. https://doi.org/10.1134/S0037446616040030
[10] K. Denecke and H. Hounnon, Partial Menger algebras of terms, Asian-Eur. J. Math. 14 (6) (2021) 2150092. https://doi.org/10.1142/S1793557121500923
[11] K. Denecke and D. Phusanga, Hyperformulas and solid algebraic systems, Studia Logica 9 (2008) 263–286. https://doi.org/10.1007/s11225-008-9152-3
[12] K. Denecke and S.L. Wismath, Complexity of terms, composition and hypersubstitution, Int. J. Math. Math. Sci. 15 (2003) 959–969. https://doi.org/10.1155/S0161171203202118
[13] W.A. Dudek and V.S. Trokhimenko, Menger algebras of $k$ commutative $n$-place functions, Georgian Math. J. 28 (3) (2021) 355–361. https://doi.org/10.1515/gmj-2019-2072
[14] Y. Guellouma and H. Cherroun, From tree automata to rational tree expressions, Int. J. Found. Comput. Sci. 29 (6) (2018) 1045–1062. https://doi.org/10.1142/S012905411850020X
[15] H.J. Hoehnke and J. Schreckenberger, Partial Algebras and Their Theories (Shaker-Verlag, Aachen, 2007).
[16] S. Kerhoff, R. Pöschel and F.M. Schneider, A short introduction to clones, Electron. Notes Theoret. Comput. Sci. 303 (2014) 107–120. https://doi.org/10.1016/j.entcs.2014.02.006
[17] K.A. Kearnes and A. Szendrei, Clones of algebras with parallelogram terms, Internat. J. Algebra Comput. 22 (2012) 1250005. https://doi.org/10.1142/S0218196711006716
[18] J. Koppitz and D. Phusanga, The monoid of hypersubstitutions for algebraic systems, J. Announcements Union Sci Sliven 33 (2018) 120–127.
[19] T. Kumduang and S. Leeratanavalee, Left translations and isomorphism theroems of Menger algebras, Kyungpook Math. J. 61 (2) (2021) 223–237. https://doi.org/10.5666/KMJ.2021.61.2.223
[20] T. Kumduang and S. Leeratanavalee, Menger hyperalgebras and their representations, Commun. Algebra 49 (4) (2021) 1513–1533. https://doi.org/10.1080/00927872.2020.1839089
[21] T. Kumduang, and S. Leeratanavalee, Menger systems of idempotent cyclic and weak near-unanimity multiplace functions, Asian-Eur. J. Math. (2022). https://doi.org/10.1142/S1793557122501625
[22] T. Kumduang and S. Leeratanavalee, Semigroups of terms, tree languages, Menger algebra of $n$-ary functions and their embedding theorems, Symmetry 13 (4) (2021) 558. https://doi.org/10.3390/sym13040558
[23] P. Kunama and S. Leeratanavalee, Green's relations on submonoids of generalized hypersubstitutions of type $(n)$, Discuss. Math. Gen. Algebra Appl. 41 (2) (2021) 239–248. https://doi.org/10.7151/dmgaa.1366
[24] E. Lehtonen, R. Paschel and T. Waldhauser, Reflection-closed varieties of multisorted algebras and minor identities, Algebra Univ. 79 (2018) 70. https://doi.org/10.1007/s00012-018-0547-3
[25] N. Lekkoksung and S. Lekkoksung, On partial clones of $k$-terms, Discuss. Math. Gen. Algebra Appl. 41 (2021) 361–379. https://doi.org/10.7151/dmgaa.1367
[26] A.I. Mal'cev, Algebraic Systems (Akademie-Verlag, Berlin, Germany, 1973).
[27] D. Phusanga, A binary relation on sets of hypersubstitutions for algebraic systems, South. Asian Bull. Math. 44 (2020) 255–269.
[28] D. Phusanga, J. Joomwong, S. Jino and J. Koppitz, All idempotent and regular elements in the monoid of generalized hypersubstitutions for algebraic systems of type $(2; 2)$, Asian-Eur. J. Math. 14 (2) (2021) 2150015. https://doi.org/10.1142/S1793557121500157
[29] D. Phusanga and J. Koppitz, Some varieties of algebraic systems of type $((n),(m))$, Asian-Eur. J. Math. 12 (2019) 1950005. https://doi.org/10.1142/S1793557119500050
[30] S. Shtrakov and J. Koppitz, Stable varieties of semigroups and groupoids, Algebra Univers. 75 (2016) 85–106. https://doi.org/10.1007/s00012-015-0359-7
[31] S.V. Sudoplatov, Formulas and properties, their links and characteristics, Mathematics 9 (2021) 1391. https://doi.org/10.3390/math9121391
[32] N. Sungtong, The algebraic structures of quantifer free formulas induced by terms of a fixed variable, Int. J. Math. Comput. Sci. 16 (1) (2021) 459–469.
[33] K. Wattanatripop and T. Changphas, Clones of terms of a fixed variable, Mathematics 8 (2020) 260. https://doi.org/10.3390/math8020260
[34] K. Wattanatripop and T. Changphas, The Menger algebra of terms induced by order-decreasing transformations, Commun. Algebra 49 (7) (2021) 3114–3123. https://doi.org/10.1080/00927872.2021.1888385
[35] K. Wattanatripop, T. Kumduang, T. Changphas and S. Leeratanavalee, Power Menger algebras of terms induced by order-decreasing transformations and superpositions, Int. J. Math. Comput. Sci. 16 (4) (2021) 1697–1707.
[36] D. Zhuk, The cardinality of the set of all clones containing a given minimal clone on three elements, Algebra Univers. 68 (2012) 295–320. https://doi.org/10.1007/s00012-012-0207-y
[37] P. Zusmanovich, On the unity of Robinson Amitsur ultrafilters, J. Algebra 388 (2013) 268–286. https://doi.org/10.1016/j.jalgebra.2013.04.024