The partial many-sorted algebras of terms and formulas with fixed variables count
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 339-362.

Voir la notice de l'article provenant de la source Library of Science

Terms and formulas, which are formal expressions in first and second order languages obtained by alphabets, operation symbols, and relation symbols, are used to study algebras and algebraic systems. In this paper, we introduce the notion of terms with fixed variables count. The partial many-sorted superposition operations of such terms and their partial many-sorted algebra satisfying clone axioms as weak identities are presented. We also extend our structures from algebras to algebraic systems via the concept of formulas with fixed variables count. Conditions for the set of such formulas to be closed under taking of superposition of formulas are determined. We construct the partial many-sorted algebra of formulas with fixed variables count and investigate its satisfaction by clone axioms. Finally, we prove that such partial structure is isomorphic to some Menger systems of the same rank of partial multiplace functions.
Keywords: partial many-sorted algebra, term, formula, partial operation, representation
@article{DMGAA_2023_43_2_a11,
     author = {Kumduang, Thodsaporn and Leeratanavalee, Sorasak},
     title = {The partial many-sorted algebras of terms and formulas with fixed variables count},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {339--362},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a11/}
}
TY  - JOUR
AU  - Kumduang, Thodsaporn
AU  - Leeratanavalee, Sorasak
TI  - The partial many-sorted algebras of terms and formulas with fixed variables count
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 339
EP  - 362
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a11/
LA  - en
ID  - DMGAA_2023_43_2_a11
ER  - 
%0 Journal Article
%A Kumduang, Thodsaporn
%A Leeratanavalee, Sorasak
%T The partial many-sorted algebras of terms and formulas with fixed variables count
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 339-362
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a11/
%G en
%F DMGAA_2023_43_2_a11
Kumduang, Thodsaporn; Leeratanavalee, Sorasak. The partial many-sorted algebras of terms and formulas with fixed variables count. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 339-362. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a11/

[1] E. Aichinger, N. Mudrinski and J. Oprsal, Complexity of term representations of finitary functions, Int. J. Algebra Comput. 28 (2018) 1101–1118. https://doi.org/10.1142/S0218196718500480

[2] S. Bozapalidis, Z. Flap and G. Rahonis, Equational tree transformations, Theoret. Comput. Sci. 412 (99) (2011) 3676–3692. https://doi.org/10.1016/j.tcs.2011.03.028

[3] P. Burmeister, A model theoretic oriented approach to partial algebras, in: Introduction to Theory and Application of Partial Algebras, Mathematical Research 32 (Akademie Verlag, 1986).

[4] S. Busaman, Unitary Menger algebra of C-quantifier free formulas of type $(\tau_n,2)$, Asian-Eur. J. Math. 14 (4) (2021) 2150050. https://doi.org/10.1142/S1793557121500509

[5] N. Chansuriya, All maximal idempotent submonoids of generalized cohypersubstitutions of type $\tau=(2)$, Discuss. Math. Gen. Algebra Appl. 41 (1) (2021) 45–46. https://doi.org/10.7151/dmgaa.1351

[6] J. Crulis, Multi-algebras from the viewpoint of algebraic logic, Algebra Discrete Math. 1 (2003) 20–31.

[7] K. Denecke, Partial clones, Asian-Eur. J. Math. 13 (8) (2020) 2050161. https://doi.org/10.1142/S1793557120501612

[8] K. Denecke, The partial clone of linear formulas, Sib. Math J. 60 (2019) 572–584. https://doi.org/10.1134/S0037446619040037

[9] K. Denecke, The partial clone of linear terms, Sib. Math J. 57 (4) (2016) 589–598. https://doi.org/10.1134/S0037446616040030

[10] K. Denecke and H. Hounnon, Partial Menger algebras of terms, Asian-Eur. J. Math. 14 (6) (2021) 2150092. https://doi.org/10.1142/S1793557121500923

[11] K. Denecke and D. Phusanga, Hyperformulas and solid algebraic systems, Studia Logica 9 (2008) 263–286. https://doi.org/10.1007/s11225-008-9152-3

[12] K. Denecke and S.L. Wismath, Complexity of terms, composition and hypersubstitution, Int. J. Math. Math. Sci. 15 (2003) 959–969. https://doi.org/10.1155/S0161171203202118

[13] W.A. Dudek and V.S. Trokhimenko, Menger algebras of $k$ commutative $n$-place functions, Georgian Math. J. 28 (3) (2021) 355–361. https://doi.org/10.1515/gmj-2019-2072

[14] Y. Guellouma and H. Cherroun, From tree automata to rational tree expressions, Int. J. Found. Comput. Sci. 29 (6) (2018) 1045–1062. https://doi.org/10.1142/S012905411850020X

[15] H.J. Hoehnke and J. Schreckenberger, Partial Algebras and Their Theories (Shaker-Verlag, Aachen, 2007).

[16] S. Kerhoff, R. Pöschel and F.M. Schneider, A short introduction to clones, Electron. Notes Theoret. Comput. Sci. 303 (2014) 107–120. https://doi.org/10.1016/j.entcs.2014.02.006

[17] K.A. Kearnes and A. Szendrei, Clones of algebras with parallelogram terms, Internat. J. Algebra Comput. 22 (2012) 1250005. https://doi.org/10.1142/S0218196711006716

[18] J. Koppitz and D. Phusanga, The monoid of hypersubstitutions for algebraic systems, J. Announcements Union Sci Sliven 33 (2018) 120–127.

[19] T. Kumduang and S. Leeratanavalee, Left translations and isomorphism theroems of Menger algebras, Kyungpook Math. J. 61 (2) (2021) 223–237. https://doi.org/10.5666/KMJ.2021.61.2.223

[20] T. Kumduang and S. Leeratanavalee, Menger hyperalgebras and their representations, Commun. Algebra 49 (4) (2021) 1513–1533. https://doi.org/10.1080/00927872.2020.1839089

[21] T. Kumduang, and S. Leeratanavalee, Menger systems of idempotent cyclic and weak near-unanimity multiplace functions, Asian-Eur. J. Math. (2022). https://doi.org/10.1142/S1793557122501625

[22] T. Kumduang and S. Leeratanavalee, Semigroups of terms, tree languages, Menger algebra of $n$-ary functions and their embedding theorems, Symmetry 13 (4) (2021) 558. https://doi.org/10.3390/sym13040558

[23] P. Kunama and S. Leeratanavalee, Green's relations on submonoids of generalized hypersubstitutions of type $(n)$, Discuss. Math. Gen. Algebra Appl. 41 (2) (2021) 239–248. https://doi.org/10.7151/dmgaa.1366

[24] E. Lehtonen, R. Paschel and T. Waldhauser, Reflection-closed varieties of multisorted algebras and minor identities, Algebra Univ. 79 (2018) 70. https://doi.org/10.1007/s00012-018-0547-3

[25] N. Lekkoksung and S. Lekkoksung, On partial clones of $k$-terms, Discuss. Math. Gen. Algebra Appl. 41 (2021) 361–379. https://doi.org/10.7151/dmgaa.1367

[26] A.I. Mal'cev, Algebraic Systems (Akademie-Verlag, Berlin, Germany, 1973).

[27] D. Phusanga, A binary relation on sets of hypersubstitutions for algebraic systems, South. Asian Bull. Math. 44 (2020) 255–269.

[28] D. Phusanga, J. Joomwong, S. Jino and J. Koppitz, All idempotent and regular elements in the monoid of generalized hypersubstitutions for algebraic systems of type $(2; 2)$, Asian-Eur. J. Math. 14 (2) (2021) 2150015. https://doi.org/10.1142/S1793557121500157

[29] D. Phusanga and J. Koppitz, Some varieties of algebraic systems of type $((n),(m))$, Asian-Eur. J. Math. 12 (2019) 1950005. https://doi.org/10.1142/S1793557119500050

[30] S. Shtrakov and J. Koppitz, Stable varieties of semigroups and groupoids, Algebra Univers. 75 (2016) 85–106. https://doi.org/10.1007/s00012-015-0359-7

[31] S.V. Sudoplatov, Formulas and properties, their links and characteristics, Mathematics 9 (2021) 1391. https://doi.org/10.3390/math9121391

[32] N. Sungtong, The algebraic structures of quantifer free formulas induced by terms of a fixed variable, Int. J. Math. Comput. Sci. 16 (1) (2021) 459–469.

[33] K. Wattanatripop and T. Changphas, Clones of terms of a fixed variable, Mathematics 8 (2020) 260. https://doi.org/10.3390/math8020260

[34] K. Wattanatripop and T. Changphas, The Menger algebra of terms induced by order-decreasing transformations, Commun. Algebra 49 (7) (2021) 3114–3123. https://doi.org/10.1080/00927872.2021.1888385

[35] K. Wattanatripop, T. Kumduang, T. Changphas and S. Leeratanavalee, Power Menger algebras of terms induced by order-decreasing transformations and superpositions, Int. J. Math. Comput. Sci. 16 (4) (2021) 1697–1707.

[36] D. Zhuk, The cardinality of the set of all clones containing a given minimal clone on three elements, Algebra Univers. 68 (2012) 295–320. https://doi.org/10.1007/s00012-012-0207-y

[37] P. Zusmanovich, On the unity of Robinson Amitsur ultrafilters, J. Algebra 388 (2013) 268–286. https://doi.org/10.1016/j.jalgebra.2013.04.024