Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_2_a0, author = {Sahoo, Tapatee and Kedukodi, Babushri Srinivas and Harikrishnan, Panackal and Kuncham, Syam Prasad}, title = {On the finite {Goldie} dimension of sum of two ideals of an {R-group}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {177--187}, publisher = {mathdoc}, volume = {43}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a0/} }
TY - JOUR AU - Sahoo, Tapatee AU - Kedukodi, Babushri Srinivas AU - Harikrishnan, Panackal AU - Kuncham, Syam Prasad TI - On the finite Goldie dimension of sum of two ideals of an R-group JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 177 EP - 187 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a0/ LA - en ID - DMGAA_2023_43_2_a0 ER -
%0 Journal Article %A Sahoo, Tapatee %A Kedukodi, Babushri Srinivas %A Harikrishnan, Panackal %A Kuncham, Syam Prasad %T On the finite Goldie dimension of sum of two ideals of an R-group %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 177-187 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a0/ %G en %F DMGAA_2023_43_2_a0
Sahoo, Tapatee; Kedukodi, Babushri Srinivas; Harikrishnan, Panackal; Kuncham, Syam Prasad. On the finite Goldie dimension of sum of two ideals of an R-group. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 2, pp. 177-187. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_2_a0/
[1] Aichinger E.,Binder F., Ecker F., Mayr P., & Nöbauer C., SONATA - system of near-rings and their applications, GAP package, Version 2.8; 2015. http://www.algebra.uni-linz.ac.at/Sonata/
[2] Anderson Frank W, Fuller, Kent R, Rings and categories of modules, Graduate Texts in Mathematics, Springer-Berlag New York, 13, 1992. https://doi.org/10.1007/978-1-4612-4418-9
[3] Bhavanari S., On modules with finite Goldie Dimension, J. Ramanujan Math. Soc. 5(1), 61-75, 1990.
[4] Bhavanari S., and Kuncham S.P., Linearly independent elements in $ N$-groups with Finite Goldie Dimension, Bull. Korean Math. Soc., 42(3), 433-441, 2005. https://doi.org/10.4134/BKMS.2005.42.3.433
[5] Bhavanari S., Goldie dimension and spanning dimension in modules and $ N $-groups, Nearrings, Nearfields and related topics (Review volume), World Scientific, 26-41, 2017. https://doi.org/10.1142/9789813207363\_0004
[6] Bhavanari S., Contributions to near-ring theory, Doctrol Thesis, Nagarjuna University, India, 1984.
[7] Bhavanari S., and Kuncham S.P., A result on E-direct systems in $ N $-groups, Indian J. pure appl. Math., 29(3), 285-287, 1998.
[8] Bhavanari S., and Kuncham S.P., Nearrings, fuzzy ideals, and graph theory. CRC press, 2013. https://doi.org/10.1201/b14934
[9] Bhavanari S., Kuncham S.P., Paruchuri V.R., and Mallikarjuna B., A note on dimensions in $N$-groups, Italian Journal of Pure and Applied Mathematics, 44, 649-657, 2020.
[10] Goldie A.W., The structure of noetherian rings, Lectures on Rings and Modules, vol 246. Springer, Berlin, Heidelberg, 1972. https://doi.org/10.1007/BFb0059567
[11] Kuncham S.P., Contributions to near-ring theory II. Diss. Doctoral Thesis, Nagarjuna University, 2000.
[12] Kuncham S.P, Kedukodi B.S., Harikrishnan P.K., and Bhavanari S. (Editors), Nearrings, Nearfields and Related Topics. World Scientific Publishing Company, 2017. https://doi.org/10.1142/10375
[13] Nayak Hamsa, Kuncham S.P., Kedukodi B.S., $\Theta$$Γ$ $N$-group,\textit{ Matematicki Vesnik}, 70(1), 64-78, 2018.
[14] Oswald A., Near-rings in which every N-subgroup is principal. Proceedings of the London Mathematical Society 3.1, 67-88, 1974. https://doi.org/10.1112/plms/s3-28.1.67
[15] Oswald A., Completely reducible near-rings, Proceedings of the Edinburgh Mathematical Society, 20(3), 187-197, 1977.
[16] Pilz G., Near-Rings: the theory and its applications, 23, North Holland, 1983.
[17] Tapatee S., Kedukodi B.S., Shum K.P., Harikrishnan P.K., Kuncham S.P., On essential elements in a lattice and Goldie analogue theorem, Asian-Eur. J. Math., 2250091: 2021. https://doi.org/10.1142/S1793557122500917
[18] Yenumula V.R., Bhavanari S., A note on $ N $-Groups, Indian J. Pure Appl. Math., 19(9), 842-845, 1988.