Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a8, author = {Sarohe, Poonam and Kumar, Pratibha}, title = {Quasi-primary ideals in commutative semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {101--110}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/} }
TY - JOUR AU - Sarohe, Poonam AU - Kumar, Pratibha TI - Quasi-primary ideals in commutative semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 101 EP - 110 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/ LA - en ID - DMGAA_2023_43_1_a8 ER -
Sarohe, Poonam; Kumar, Pratibha. Quasi-primary ideals in commutative semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/
[1] P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969) 412–416. https://doi.org/10.1090/S0002-9939-1969-0237575-4
[2] R.E. Atani and S.E. Atani, Ideal theory in commutative semirings, Bul. Acad. De Stiinte, A Rep. Mold. Mat. 57 (2) (2008) 14–23.
[3] R.E. Atani and S.E. Atani, Spectra of semimodules, Buletinul Academiei De stiinte, A Republich Moldova, Matematica 3 (67) (2011) 15–28.
[4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417–429. https://doi.org/10.1017/S0004972700039344
[5] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (4) (2014) 1163–1173. https://doi.org/10.4134/BKMS.2014.51.4.1163
[6] A.Y. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J. 52 (1) (2012) 91–97. https://doi.org/10.5666/KMJ.2012.52.1.91
[7] M.K. Dubey, Prime and weakly prime ideals in semirings, Quasigroups and Related Systems 20 (2012) 197–202.
[8] L. Fuchs, On quasi-primary ideals, Acta. Sci. Math. (Szeged) 11 (1946-48) 174–183.
[9] P. Kumar, M.K. Dubey and P. Sarohe, On 2-absorbing ideals in commutative semirings, Quasigroups and Related Systems 24 (2016) 67–74.
[10] J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, Dordrecht, 1999).
[11] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (3) (1934) 916–920. https://doi.org/10.1090/S0002-9904-1934-06003-8