Quasi-primary ideals in commutative semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 101-110.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we define quasi-primary ideals in commutative semirings S with 1 0 which is a generalization of primary ideals. A proper ideal I of a semiring S is said to be a quasi-primary ideal of S if ab∈√(I) implies a∈√(I) or b∈√(I). We also introduce the concept of 2-absoring quasi-primary ideal of a semiring S which is a generalization of quasi-primary ideal of S. A proper ideal I of a semiring S is said to be a 2-absorbing quasi-primary ideal if abc∈√(I) implies ab∈√(I) or bc∈√(I) or ac∈√(I). Some basic results related to 2-absorbing quasi-primary ideal have also been given.
Keywords: semiring, subtractive ideal, primary ideal, quasi-primary ideal, $2$-absorbing quasi-primary ideal, $Q$-ideal
@article{DMGAA_2023_43_1_a8,
     author = {Sarohe, Poonam and Kumar, Pratibha},
     title = {Quasi-primary ideals in commutative semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/}
}
TY  - JOUR
AU  - Sarohe, Poonam
AU  - Kumar, Pratibha
TI  - Quasi-primary ideals in commutative semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 101
EP  - 110
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/
LA  - en
ID  - DMGAA_2023_43_1_a8
ER  - 
%0 Journal Article
%A Sarohe, Poonam
%A Kumar, Pratibha
%T Quasi-primary ideals in commutative semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 101-110
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/
%G en
%F DMGAA_2023_43_1_a8
Sarohe, Poonam; Kumar, Pratibha. Quasi-primary ideals in commutative semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/

[1] P.J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969) 412–416. https://doi.org/10.1090/S0002-9939-1969-0237575-4

[2] R.E. Atani and S.E. Atani, Ideal theory in commutative semirings, Bul. Acad. De Stiinte, A Rep. Mold. Mat. 57 (2) (2008) 14–23.

[3] R.E. Atani and S.E. Atani, Spectra of semimodules, Buletinul Academiei De stiinte, A Republich Moldova, Matematica 3 (67) (2011) 15–28.

[4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417–429. https://doi.org/10.1017/S0004972700039344

[5] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (4) (2014) 1163–1173. https://doi.org/10.4134/BKMS.2014.51.4.1163

[6] A.Y. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J. 52 (1) (2012) 91–97. https://doi.org/10.5666/KMJ.2012.52.1.91

[7] M.K. Dubey, Prime and weakly prime ideals in semirings, Quasigroups and Related Systems 20 (2012) 197–202.

[8] L. Fuchs, On quasi-primary ideals, Acta. Sci. Math. (Szeged) 11 (1946-48) 174–183.

[9] P. Kumar, M.K. Dubey and P. Sarohe, On 2-absorbing ideals in commutative semirings, Quasigroups and Related Systems 24 (2016) 67–74.

[10] J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, Dordrecht, 1999).

[11] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (3) (1934) 916–920. https://doi.org/10.1090/S0002-9904-1934-06003-8