Quasi-primary ideals in commutative semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 101-110

Voir la notice de l'article provenant de la source Library of Science

In this paper, we define quasi-primary ideals in commutative semirings S with 1 0 which is a generalization of primary ideals. A proper ideal I of a semiring S is said to be a quasi-primary ideal of S if ab∈√(I) implies a∈√(I) or b∈√(I). We also introduce the concept of 2-absoring quasi-primary ideal of a semiring S which is a generalization of quasi-primary ideal of S. A proper ideal I of a semiring S is said to be a 2-absorbing quasi-primary ideal if abc∈√(I) implies ab∈√(I) or bc∈√(I) or ac∈√(I). Some basic results related to 2-absorbing quasi-primary ideal have also been given.
Keywords: semiring, subtractive ideal, primary ideal, quasi-primary ideal, $2$-absorbing quasi-primary ideal, $Q$-ideal
@article{DMGAA_2023_43_1_a8,
     author = {Sarohe, Poonam and Kumar, Pratibha},
     title = {Quasi-primary ideals in commutative semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/}
}
TY  - JOUR
AU  - Sarohe, Poonam
AU  - Kumar, Pratibha
TI  - Quasi-primary ideals in commutative semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 101
EP  - 110
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/
LA  - en
ID  - DMGAA_2023_43_1_a8
ER  - 
%0 Journal Article
%A Sarohe, Poonam
%A Kumar, Pratibha
%T Quasi-primary ideals in commutative semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 101-110
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/
%G en
%F DMGAA_2023_43_1_a8
Sarohe, Poonam; Kumar, Pratibha. Quasi-primary ideals in commutative semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a8/