Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a7, author = {Das, Monali and Sardar, Sujit Kumar}, title = {On some {Morita} invariant radicals of semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {85--100}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/} }
TY - JOUR AU - Das, Monali AU - Sardar, Sujit Kumar TI - On some Morita invariant radicals of semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 85 EP - 100 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/ LA - en ID - DMGAA_2023_43_1_a7 ER -
Das, Monali; Sardar, Sujit Kumar. On some Morita invariant radicals of semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/
[1] J. Adamek, H. Herrlich and G. Strecker, Abstract and Concrete Categories (John Wiley & Sons, Inc., New York, 1990).
[2] K. Dey, S. Gupta and S.K. Sardar, Morita invariants of semirings related to a Morita context, Asian-European J. Math. 12 (2) (2019) 1950023 (15 pages). https://doi.org/10.1142/S1793557119500232
[3] T.K. Dutta and M.L. Das, On strongly prime semiring, Bull. Malaysian Math. Sci. Soc. 30 (2) (2007) 135–141.
[4] T.K. Dutta and M.L. Das, On uniformly strongly prime semiring, Int. J. Math. Anal. 2 (1–3) (2006) 73–82.
[5] J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, Dordrecht, 1999).
[6] S. Gupta and S.K. Sardar, Morita invariants of semirings-II, Asian-European J. Math. 11 (1) (2018) 1850014. https://doi.org/10.1142/S1793557118500146
[7] D. Handelman and J. Lawrence, Strongly prime rings, Trans. Amer. Math. Soc. 211 (1975) 209–223. https://doi.org/10.1090/s0002-9947-1975-0387332-0
[8] U. Hebisch and H.J. Weinert, Semirings and semifields, Handbook Alg. 1 (1996) 425–462. https://doi.org/10.1016/s1570-7954(96)80016-7
[9] U. Hebisch and H.J. Weinert, Radical theory for semirings, Quaest. Math. 20 (4) (1997) 647–661. https://doi.org/10.1080/16073606.1997.9632232
[10] Y. Katsov and T.G. Nam, Morita equivalence and homological characterization of semirings, J. Alg. Its Appl. 10 (3) (2011) 445–473. https://doi.org/10.1142/S0219498811004793
[11] S. Mac Lane, Categories for the Working Mathematician (Springer, New York, 1971).
[12] K. Morita, Duality of modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Section A 6 (150) (1958) 83–142.
[13] D.M. Olson, A uniformly strongly prime radical, J. Austral. Math. Soc., Ser. A 43 (1) (1987) 95–102. https://doi.org/10.1017/s1446788700029013
[14] S.K. Sardar, S. Gupta and B.C. Saha, Morita equivalence of semirings and its connection with Nobusawa $Γ$-semirings with unities, Alg. Colloq. 22 (Spec 1) (2015) 985–1000. https://doi.org/10.1142/S1005386715000826
[15] S.K. Sardar and S. Gupta, Morita invariants of semirings, J. Algebra Appl. 15 (2) (2016) 14pp. 1650023. https://doi.org/10.1142/S0219498816500237