On some Morita invariant radicals of semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 85-100.

Voir la notice de l'article provenant de la source Library of Science

In this paper we prove that if R and S are Morita equivalent semirings via Morita context (R,S,P,Q,θ,ϕ), then there exists a one-to-one inclusion preserving correspondence between the set of all prime ((right) strongly prime, uniformly strongly prime) ideals of R and the set of all prime (resp. (right) strongly prime, uniformly strongly prime) subsemimodules of P. We also show that prime radicals, (right) strongly prime radicals, uniformly strongly prime radicals are preserved under Morita equivalence of semirings.
Keywords: Morita context, Morita equivalence, semiring, semimodule, radical, prime subsemimodule, strongly prime subsemimodule, uniformly strongly prime, subsemimodule
@article{DMGAA_2023_43_1_a7,
     author = {Das, Monali and Sardar, Sujit Kumar},
     title = {On some {Morita} invariant radicals of semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {85--100},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/}
}
TY  - JOUR
AU  - Das, Monali
AU  - Sardar, Sujit Kumar
TI  - On some Morita invariant radicals of semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 85
EP  - 100
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/
LA  - en
ID  - DMGAA_2023_43_1_a7
ER  - 
%0 Journal Article
%A Das, Monali
%A Sardar, Sujit Kumar
%T On some Morita invariant radicals of semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 85-100
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/
%G en
%F DMGAA_2023_43_1_a7
Das, Monali; Sardar, Sujit Kumar. On some Morita invariant radicals of semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/

[1] J. Adamek, H. Herrlich and G. Strecker, Abstract and Concrete Categories (John Wiley & Sons, Inc., New York, 1990).

[2] K. Dey, S. Gupta and S.K. Sardar, Morita invariants of semirings related to a Morita context, Asian-European J. Math. 12 (2) (2019) 1950023 (15 pages). https://doi.org/10.1142/S1793557119500232

[3] T.K. Dutta and M.L. Das, On strongly prime semiring, Bull. Malaysian Math. Sci. Soc. 30 (2) (2007) 135–141.

[4] T.K. Dutta and M.L. Das, On uniformly strongly prime semiring, Int. J. Math. Anal. 2 (1–3) (2006) 73–82.

[5] J.S. Golan, Semirings and Their Applications (Kluwer Academic Publishers, Dordrecht, 1999).

[6] S. Gupta and S.K. Sardar, Morita invariants of semirings-II, Asian-European J. Math. 11 (1) (2018) 1850014. https://doi.org/10.1142/S1793557118500146

[7] D. Handelman and J. Lawrence, Strongly prime rings, Trans. Amer. Math. Soc. 211 (1975) 209–223. https://doi.org/10.1090/s0002-9947-1975-0387332-0

[8] U. Hebisch and H.J. Weinert, Semirings and semifields, Handbook Alg. 1 (1996) 425–462. https://doi.org/10.1016/s1570-7954(96)80016-7

[9] U. Hebisch and H.J. Weinert, Radical theory for semirings, Quaest. Math. 20 (4) (1997) 647–661. https://doi.org/10.1080/16073606.1997.9632232

[10] Y. Katsov and T.G. Nam, Morita equivalence and homological characterization of semirings, J. Alg. Its Appl. 10 (3) (2011) 445–473. https://doi.org/10.1142/S0219498811004793

[11] S. Mac Lane, Categories for the Working Mathematician (Springer, New York, 1971).

[12] K. Morita, Duality of modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Section A 6 (150) (1958) 83–142.

[13] D.M. Olson, A uniformly strongly prime radical, J. Austral. Math. Soc., Ser. A 43 (1) (1987) 95–102. https://doi.org/10.1017/s1446788700029013

[14] S.K. Sardar, S. Gupta and B.C. Saha, Morita equivalence of semirings and its connection with Nobusawa $Γ$-semirings with unities, Alg. Colloq. 22 (Spec 1) (2015) 985–1000. https://doi.org/10.1142/S1005386715000826

[15] S.K. Sardar and S. Gupta, Morita invariants of semirings, J. Algebra Appl. 15 (2) (2016) 14pp. 1650023. https://doi.org/10.1142/S0219498816500237