On some Morita invariant radicals of semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 85-100
Voir la notice de l'article provenant de la source Library of Science
In this paper we prove that if R and S are Morita equivalent semirings via Morita context (R,S,P,Q,θ,ϕ), then there exists a one-to-one inclusion preserving correspondence between the set of all prime ((right) strongly prime, uniformly strongly prime) ideals of R and the set of all prime (resp. (right) strongly prime, uniformly strongly prime) subsemimodules of P. We also show that prime radicals, (right) strongly prime radicals, uniformly strongly prime radicals are preserved under Morita equivalence of semirings.
Keywords:
Morita context, Morita equivalence, semiring, semimodule, radical, prime subsemimodule, strongly prime subsemimodule, uniformly strongly prime, subsemimodule
@article{DMGAA_2023_43_1_a7,
author = {Das, Monali and Sardar, Sujit Kumar},
title = {On some {Morita} invariant radicals of semirings},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {85--100},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/}
}
TY - JOUR AU - Das, Monali AU - Sardar, Sujit Kumar TI - On some Morita invariant radicals of semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 85 EP - 100 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/ LA - en ID - DMGAA_2023_43_1_a7 ER -
Das, Monali; Sardar, Sujit Kumar. On some Morita invariant radicals of semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 85-100. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a7/