Using the Swing Lemma and \( \mathcal{C}_1 \)-diagrams for congruences of planar semimodular lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 63-74

Voir la notice de l'article provenant de la source Library of Science

A planar semimodular lattice K is slim if 𝖬_3 is not a sublattice of K. In a recent paper, G. Czédli found four new properties of congruence lattices of slim, planar, semimodular lattices, including the No Child Property: Let 𝒫 be the ordered set of join-irreducible congruences of K. Let x,y,z ∈𝒫 and let z be a maximal element of 𝒫. If x y and x, y ≺ z in 𝒫, then there is no element u of 𝒫 such that u ≺ x, y in 𝒫. The Swing Lemma and a standardized diagram type are used to give direct proofs of Czédli's four properties.
Keywords: rectangular lattice, slim planar semimodular lattice, congruence lattice
@article{DMGAA_2023_43_1_a5,
     author = {Gr\"atzer, George},
     title = {Using the {Swing} {Lemma} and \( {\mathcal{C}_1} \)-diagrams for congruences of planar semimodular lattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a5/}
}
TY  - JOUR
AU  - Grätzer, George
TI  - Using the Swing Lemma and \( \mathcal{C}_1 \)-diagrams for congruences of planar semimodular lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 63
EP  - 74
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a5/
LA  - en
ID  - DMGAA_2023_43_1_a5
ER  - 
%0 Journal Article
%A Grätzer, George
%T Using the Swing Lemma and \( \mathcal{C}_1 \)-diagrams for congruences of planar semimodular lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 63-74
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a5/
%G en
%F DMGAA_2023_43_1_a5
Grätzer, George. Using the Swing Lemma and \( \mathcal{C}_1 \)-diagrams for congruences of planar semimodular lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a5/