Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a5, author = {Gr\"atzer, George}, title = {Using the {Swing} {Lemma} and \( {\mathcal{C}_1} \)-diagrams for congruences of planar semimodular lattices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {63--74}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a5/} }
TY - JOUR AU - Grätzer, George TI - Using the Swing Lemma and \( \mathcal{C}_1 \)-diagrams for congruences of planar semimodular lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 63 EP - 74 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a5/ LA - en ID - DMGAA_2023_43_1_a5 ER -
%0 Journal Article %A Grätzer, George %T Using the Swing Lemma and \( \mathcal{C}_1 \)-diagrams for congruences of planar semimodular lattices %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 63-74 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a5/ %G en %F DMGAA_2023_43_1_a5
Grätzer, George. Using the Swing Lemma and \( \mathcal{C}_1 \)-diagrams for congruences of planar semimodular lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a5/
[1] G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72 (2014) 125–154. https://doi.org/10.1007/s00012-014-0294-z
[2] G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Universalis 72 (2014) 225–230. https://doi.org/10.1007/s00012-014-0286-z
[3] G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices, Algebra Universalis 77 (2017) 443–498. https://doi.org/10.1007/s00012-017-0437-0
[4] G. Czédli, Lamps in slim rectangular planar semimodular lattices, Acta Sci. Math. (Szeged) 87 (2021) 381–413. \pagebreak https://doi.org/10.14232/actasm-021-865-y0
[5] G. Czédli, Non-finite axiomatizability of some finite structures. arXiv:2102.00526
[6] G. Czédli and G. Grätzer, Notes on planar semimodular lattices VII}. Resections of planar semimodular lattices, Order 30 (2013) 847–858. https://doi.org/10.1007/s11083-012-9281-1
[7] G. Czédli and G. Grätzer, {Planar Semimodular Lattices: Structure and Diagrams}, Chapter 3 in \cite{LTS1}. https://doi.org/10.1007/978-3-319-06413-0_3
[8] G. Czédli and G. Grätzer, A new property of congruence lattices of slim, planar, semimodular lattices. arXiv:2103.04458
[9] G. Czédli and E.T. Schmidt, The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices, Algebra Universalis 66 (1–2) (2011) 69–79. https://doi.org/10.1007/s00012-011-0144-1
[10] G. Czédli and E.T. Schmidt, Slim semimodular lattices I}. A visual approach, ORDER 29 (2012) 481–497. https://doi.org/10.1007/s11083-011-9215-3
[11] A. Day, Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, Canad. J. Math. 31 (1979) 69–78.
[12] R. Freese, J. Ježek and J.B. Nation, Free Lattices, Mathematical Surveys and Monographs 42 (American Mathematical Society, Providence, RI, 1995). https://doi.org/10.1090/surv/042
[13] G. Grätzer, {Planar Semimodular Lattices: Congruences}, Chapter 4 in \cite{LTS1}. https://doi.org/10.1007/978-3-319-06413-0\_4
[14] G. Grätzer, Notes on planar semimodular lattices VI}. On the structure theorem of planar semimodular lattices, Algebra Universalis 69 (2013) 301–304. https://doi.org/10.1007/s00012-013-0233-4
[15] G. Grätzer, Two Topics Related to Congruence Lattices of Lattices, Chapter 10 in \cite{LTS1}. https://doi.org/10.1007/978-3-319-06413-0_10
[16] G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381–397. https://doi.org/10.1007/978-3-319-38798-7_25
[17] G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices, Acta Sci. Math. (Szeged) 81 (2015) 25–32. https://doi.org/10.14232/actasm-014-024-1
[18] G. Grätzer, The Congruences of a Finite Lattice, A {Proof-by-Picture} Approach, Second Edition (Birkhäuser, 2016). Part I is accessible at arXiv:2104.06539 https://doi.org/10.1007/978-3-319-38798-7
[19] G. Grätzer, Congruences of fork extensions of lattices, Algebra Universalis 76 (2016) 139–154.
[20] G. Grätzer, Congruences and trajectories in planar semimodular lattices, Discuss. Math. GAA 38 (2018) 131–142. https://doi.org/10.7151/dmgaa.1280
[21] G. Grätzer, Notes on planar semimodular lattices VIII.} Congruence lattices of SPS lattices, Algebra Universalis 81 (2020). https://doi.org/10.1007/s00012-020-0641-1
[22] G. Grätzer, A gentle introduction to congruences of planar semimodular lattices, Presentation at the meeting AAA 101, Novi Sad, 2021.
[23] G. Grätzer, Notes on planar semimodular lattices IX. On Czédli diagrams. arXiv:1307.0778
[24] G. Grätzer and E. Knapp, Notes on planar semimodular lattices I.} Construction, Acta Sci. Math. (Szeged) 73 (2007) 445–462.
[25] G. Grätzer and E. Knapp, A note on planar semimodular lattices, Algebra Universalis 58 (2008) 497–499. https://doi.org/10.1007/s00012-008-2089-6
[26] G. Grätzer and E. Knapp, Notes on planar semimodular lattices II.} Congruences, Acta Sci. Math. (Szeged) 74 (2008) 37–47.
[27] G. Grätzer and E. Knapp, Notes on planar semimodular lattices III.} Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.
[28] G. Grätzer and E. Knapp, Notes on planar semimodular lattices IV.} The size of a minimal congruence lattice representation with rectangular lattices, Acta Sci. Math. (Szeged) 76 (2010) 3–26.
[29] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290–297. https://doi.org/10.4153/cmb-1998-041-7
[30] G. Grätzer and T. Wares, Notes on planar semimodular lattices V.} Cover-preserving embeddings of finite semimodular lattices into simple semimodular lattices, Acta Sci. Math. (Szeged) 76 (2010) 27–33.
[31] G. Grätzer and F. Wehrung eds., Lattice Theory: Special Topics and Applications 1 (Birkhäuser Verlag, Basel, 2014). https://doi.org/10.1007/978-3-319-06413-0
[32] B. Jónsson and J.B. Nation, Representation of 2-distributive modular lattices of finite length, Acta Sci. Math. (Szeged) 51 (1987) 123–128.
[33] R.N. McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972) 1–43.
[34] J.B. Nation, Bounded finite lattices. Universal algebra (Esztergom, 1977), 531–533, Colloq. Math. Soc. János Bolyai 29 (North-Holland, Amsterdam-New York, 1982).
[35] J.B. Nation, Revised Notes on Lattice Theory. http://www.math.hawaii.edu/ jb/books.html