Strongly regular modules
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 53-62.

Voir la notice de l'article provenant de la source Library of Science

The notion of strongly regular modules over a ring which is not necessarily commutative is introduced. The relation between F-regular, GF-regular and vn-regular modules that are defined over commutative rings and strongly regular module is obtained. We have shown that a remark that if R is a reduced ring, then the R-module M is F-regular if and only if M is GF-regular is false. We have obtained the necessary and sufficient condition under which the remark is true. We have shown that if R is a commutative ring and if M is finitely generated multiplication module then the notion of F-regular, GF-regular, vn-regular and strongly regular are equivalent.
Keywords: strong $M$-$vn$-regular element, strongly regular module, $F$-regular module, $GF$-reguar module, $vn$-regular module, weak commutative module
@article{DMGAA_2023_43_1_a4,
     author = {Sudharshana, Govindarajulu Narayanan and Sivakumar, Duraisamy},
     title = {Strongly regular modules},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {53--62},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a4/}
}
TY  - JOUR
AU  - Sudharshana, Govindarajulu Narayanan
AU  - Sivakumar, Duraisamy
TI  - Strongly regular modules
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 53
EP  - 62
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a4/
LA  - en
ID  - DMGAA_2023_43_1_a4
ER  - 
%0 Journal Article
%A Sudharshana, Govindarajulu Narayanan
%A Sivakumar, Duraisamy
%T Strongly regular modules
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 53-62
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a4/
%G en
%F DMGAA_2023_43_1_a4
Sudharshana, Govindarajulu Narayanan; Sivakumar, Duraisamy. Strongly regular modules. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a4/

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (Springer-Verlag, 1974).

[2] M.A. Abduldaim and S. Chen, $GF$-Regular modules, J. Appl. Math., Article ID 630285 (2013), 7 pages. https://doi.org/10.1155/2013/630285

[3] R.F. Arens and I. Kaplansky, Topological representations of algebras, Trans. Amer. Math. Soc. 63 (1948) 457–481. https://doi.org/10.2307/1990570

[4] T. Cheatham and E. Enochs, Regular modules, Math. Japonica 26 (1) (1981) 9–12.

[5] D.J. Fieldhouse, Purity and flatness, Ph.D. Thesis (McGill University, Montreal, Canada, 1967).

[6] D.J. Fieldhouse, Pure theories, Math. Ann. 184 (1969) 1–18.

[7] C. Jayaraman and U. Tekir, Von Neumann regular modules, Comm. Alg. 46 (5) (2018) 2205–2217. https://doi.org/10.1080/00927872.2017.1372460

[8] T. Kando, Strong regularity in arbitrary rings, Nagoya Math. J. 4 (1952) 51–53.

[9] T.Y. Lam, Lectures on Modules and Rings (Springer, 1999).

[10] M. Majid Ali and J. David Smith, Pure submodules of multiplication modules, Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry 45 (10 (2004) 61–74.

[11] N.H. Mc Coy, The Theory of Rings (Chelsca Publishing Company, 1973).

[12] P. Ribenboim, Algebraic Numbers (Wiley, 1972).

[13] D. Ssevviiri, On completely prime submodules, Int. Electronic J. Alg. 19 (2016) 77–90. https://doi.org/10.24330/ieja.266194

[14] G.N. Sudharshana and D. Sivakumar, On Von Neumann regular mModules, Adv. Math. Sci. J. 9 (4) (2020) 1921–1931. https://doi.org/10.37418/amsj.9.4.51