Strongly regular modules
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 53-62
Voir la notice de l'article provenant de la source Library of Science
The notion of strongly regular modules over a ring which is not necessarily commutative is introduced. The relation between F-regular, GF-regular and vn-regular modules that are defined over commutative rings and strongly regular module is obtained. We have shown that a remark that if R is a reduced ring, then the R-module M is F-regular if and only if M is GF-regular is false. We have obtained the necessary and sufficient condition under which the remark is true. We have shown that if R is a commutative ring and if M is finitely generated multiplication module then the notion of F-regular, GF-regular, vn-regular and strongly regular are equivalent.
Keywords:
strong $M$-$vn$-regular element, strongly regular module, $F$-regular module, $GF$-reguar module, $vn$-regular module, weak commutative module
@article{DMGAA_2023_43_1_a4,
author = {Sudharshana, Govindarajulu Narayanan and Sivakumar, Duraisamy},
title = {Strongly regular modules},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {53--62},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a4/}
}
TY - JOUR AU - Sudharshana, Govindarajulu Narayanan AU - Sivakumar, Duraisamy TI - Strongly regular modules JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 53 EP - 62 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a4/ LA - en ID - DMGAA_2023_43_1_a4 ER -
Sudharshana, Govindarajulu Narayanan; Sivakumar, Duraisamy. Strongly regular modules. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a4/