Note on tranjugate lattice matrices
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 41-52.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we extend the notion of tranjugate lattice matrices and we show that a square lattice matrix can be expressed as meet (or greatest lower bound or infimum) of symmetric and tranju ate lattice matrices and we discuss their uniqueness.
Keywords: complete and completely distributive lattice, lattice vector space, skew symmetric matix, tranjugate matrix
@article{DMGAA_2023_43_1_a3,
     author = {Gudepu, Rajesh},
     title = {Note on tranjugate lattice matrices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a3/}
}
TY  - JOUR
AU  - Gudepu, Rajesh
TI  - Note on tranjugate lattice matrices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 41
EP  - 52
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a3/
LA  - en
ID  - DMGAA_2023_43_1_a3
ER  - 
%0 Journal Article
%A Gudepu, Rajesh
%T Note on tranjugate lattice matrices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 41-52
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a3/
%G en
%F DMGAA_2023_43_1_a3
Gudepu, Rajesh. Note on tranjugate lattice matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 41-52. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a3/

[1] G. Birkhoff, Lattice Theory, American Mathematical Society $3^{rd}$ edition (Providence, RI, USA, 1967).

[2] T.S. Blyth, Pseudo-complementation, Stone and Heyting algebras, in: T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer Science and Business Media, 2006), 103–118.

[3] W.-K. Chen, Boolean matrices and switching nets, Math. Magazine 39 (1) (1966) 1–8. https://doi.org/10.2307/2688986

[4] Y. Give'on, Lattice matrices, Information and Control 7 (4) (1964) 477–84. https://doi.org/10.1016/S0019-9958(64)90173-1

[5] G. Gratzer, General Lattice Theory (Academic Press, New York, San Francisco, 1978).

[6] R. Gudepu and D.P.R.V.S. Rao, A public key cryptosystem based on lattice matrices, J. Math. Comput. Sci. 10 (6) (2020) 2408–2421. https://doi.org/10.28919/jmcs/4882

[7] G. Joy, A Study on Lattice Matrices (Mahatma Gandhi University, India, 2018). http://hdl.handle.net/10603/273450.

[8] S. Lang, Introduction to Linear Algebra, $2^{nd}$ edition (Springer, United States of America, 1985).

[9] R.D. Luce, A note on Boolean matrix theory, Proc. Amer. Math. Soc. 3 (3) (1952) 382–388. https://doi.org/10.1090/S0002-9939-1952-0050559-1

[10] H. Rasiowa, An Algebraic Approch to Non-Clasical Logics (North-Holland Publishing Company, Amsterdam, London, 1974).

[11] Y.-J. Tan, Eigenvalues and eigenvectors for matrices over distributive lattices, Linear Algebra Appl. 283 (1998) 257–272. https://doi.org/10.1016/S0024-3795(98)10105-2

[12] Y.-J. Tan, On compositions of lattice matrices, Fuzzy Sets and Systems 129 (2002) 19–28. https://doi.org/10.1016/S0165-0114(01)00246-9