$(f,g)$-derivation of ordered ternary semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 149-159.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce the concept of an (f, g)-derivation of ternary semirings and we study its properties in ordered ternary semirings. We prove that if d is an (f, g)-derivation of an ordered ternary semiring S, then the kernel of d is a k-ideal of S. Moreover, we show that the kernel and the set of all fixed points of d are m-k-ideals of S.
Keywords: ordered ternary semiring, derivation, integral ordered ternary semiring
@article{DMGAA_2023_43_1_a13,
     author = {Sarasit, Napaporn and Chinram, Ronnason},
     title = {$(f,g)$-derivation of ordered ternary semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {149--159},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a13/}
}
TY  - JOUR
AU  - Sarasit, Napaporn
AU  - Chinram, Ronnason
TI  - $(f,g)$-derivation of ordered ternary semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 149
EP  - 159
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a13/
LA  - en
ID  - DMGAA_2023_43_1_a13
ER  - 
%0 Journal Article
%A Sarasit, Napaporn
%A Chinram, Ronnason
%T $(f,g)$-derivation of ordered ternary semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 149-159
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a13/
%G en
%F DMGAA_2023_43_1_a13
Sarasit, Napaporn; Chinram, Ronnason. $(f,g)$-derivation of ordered ternary semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 149-159. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a13/

[1] M. Bresar and J. Vukman, On the left derivation and related mappings, Proc. Amer. Math. Soc 110 (1990) 7–16.

[2] T.K. Dutta and S. Kar, On regular ternary semirings, in: Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics (Ed(s)), (World Scientific, New Jersey 2003) 343–355.

[3] E. Kasner, An extension of the group concept (reported by L.G. Weld), Bull. Amer. Math. Soc. 10 (1904) 290–291.

[4] H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932) 329–388.

[5] W. G. Lister, Ternary rings, Tran. of Amer. Math. Soc. 154 (1971) 37–55.

[6] M. Murali Krishna Rao and B. Venkateswarlu, Right derivation of ordered Γ-semirings, Discuss. Math. Gen. Algebra Appl. 36 (2016) 209–221.

[7] M. Murali Krishna Rao, On Γ-semiring with identity, Discuss. Math. Gen. Algebra Appl. 37 (2017) 189–207.

[8] M. Murali Krishna Rao, Ideals in ordered Γ-semirings, Discuss. Math. Gen. Algebra Appl. 38 (2018) 47–68.

[9] M. Murali Krishna Rao, (f,g)-derivation of ordered semirings, Analele Universităţii Oradea Fasc. Matematica 26 (2) (2019) 41–49.

[10] H. Prüfer, Thorie der Abelschen Gruppen, Mathematische Zeitschrift 20 (1924) 165–187.

[11] H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.) 40 (1934) 914–920.