Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a13, author = {Sarasit, Napaporn and Chinram, Ronnason}, title = {$(f,g)$-derivation of ordered ternary semirings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {149--159}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a13/} }
TY - JOUR AU - Sarasit, Napaporn AU - Chinram, Ronnason TI - $(f,g)$-derivation of ordered ternary semirings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 149 EP - 159 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a13/ LA - en ID - DMGAA_2023_43_1_a13 ER -
%0 Journal Article %A Sarasit, Napaporn %A Chinram, Ronnason %T $(f,g)$-derivation of ordered ternary semirings %J Discussiones Mathematicae. General Algebra and Applications %D 2023 %P 149-159 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a13/ %G en %F DMGAA_2023_43_1_a13
Sarasit, Napaporn; Chinram, Ronnason. $(f,g)$-derivation of ordered ternary semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 149-159. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a13/
[1] M. Bresar and J. Vukman, On the left derivation and related mappings, Proc. Amer. Math. Soc 110 (1990) 7–16.
[2] T.K. Dutta and S. Kar, On regular ternary semirings, in: Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics (Ed(s)), (World Scientific, New Jersey 2003) 343–355.
[3] E. Kasner, An extension of the group concept (reported by L.G. Weld), Bull. Amer. Math. Soc. 10 (1904) 290–291.
[4] H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. 59 (1932) 329–388.
[5] W. G. Lister, Ternary rings, Tran. of Amer. Math. Soc. 154 (1971) 37–55.
[6] M. Murali Krishna Rao and B. Venkateswarlu, Right derivation of ordered Γ-semirings, Discuss. Math. Gen. Algebra Appl. 36 (2016) 209–221.
[7] M. Murali Krishna Rao, On Γ-semiring with identity, Discuss. Math. Gen. Algebra Appl. 37 (2017) 189–207.
[8] M. Murali Krishna Rao, Ideals in ordered Γ-semirings, Discuss. Math. Gen. Algebra Appl. 38 (2018) 47–68.
[9] M. Murali Krishna Rao, (f,g)-derivation of ordered semirings, Analele Universităţii Oradea Fasc. Matematica 26 (2) (2019) 41–49.
[10] H. Prüfer, Thorie der Abelschen Gruppen, Mathematische Zeitschrift 20 (1924) 165–187.
[11] H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc. (N.S.) 40 (1934) 914–920.