Super strongly clean group rings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 135-140
Voir la notice de l'article provenant de la source Library of Science
In this paper, we study super strongly clean group rings for different classes of rings and groups. Mainly, we prove the following results:
(1) Let R be a ring with 2∈ J(R) and G be a locally finite 2-group. Then the group ring RG is super strongly clean if and only if R is super strongly clean.
(2) If R is a local ring with p∈ J(R) and G is a locally finite p-group, then the group ring RG is super strongly clean.
(3) If R is an abelian exchange ring with 2∈ J(R) and G is a locally finite 2-group, then the group ring RG is super strongly clean.
Keywords:
super strongly clean ring, clean ring, group ring, locally finite p-group
@article{DMGAA_2023_43_1_a11,
author = {Singh, Amit B. and Kumar, Susheel},
title = {Super strongly clean group rings},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {135--140},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/}
}
TY - JOUR AU - Singh, Amit B. AU - Kumar, Susheel TI - Super strongly clean group rings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 135 EP - 140 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/ LA - en ID - DMGAA_2023_43_1_a11 ER -
Singh, Amit B.; Kumar, Susheel. Super strongly clean group rings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/