Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a11, author = {Singh, Amit B. and Kumar, Susheel}, title = {Super strongly clean group rings}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {135--140}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/} }
TY - JOUR AU - Singh, Amit B. AU - Kumar, Susheel TI - Super strongly clean group rings JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 135 EP - 140 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/ LA - en ID - DMGAA_2023_43_1_a11 ER -
Singh, Amit B.; Kumar, Susheel. Super strongly clean group rings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/
[1] J. Chen, W.K. Nicholson and Y. Zhou, Group rings in which every element is uniquely the sum of a unit and an idempotent, J. Algebra 306 (2006) 453–460. https://doi.org/10.1016/j.jalgebra.2006.08.012
[2] J. Chen and Y. Zhou, Strongly clean power series rings, Proceedings of the Edinbergh Mathematical Society 50 (2007) 73–85. https://doi.org/10.1017/S0013091505000404
[3] I.G. Connell, On the group ring, Canad. J. Math. 15 (1963) 650–685. https://doi.org/10.4153/CJM-1963-067-0
[4] J. Han and W.K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001) 2589–2596. https://doi.org/10.1081/AGB-100002409
[5] N.A. Immormino and W.Wm. McGovern, Examples of clean commutative group rings, J. Algebra 405 (2014) 168–178. https://doi.org/10.1016/j.jalgebra.2014.01.030
[6] D. Khurana and C. Kumar, Group rings that are additively generated by idempotents and units. arXiv:0904.0861 [math.RA]
[7] T.Y. Lam, A First Course in Noncommutative Rings (Springer-Verlag, Berlin, 2001).
[8] W. McGovern, A characterization of commutative clean rings, Int. J. Math. Game Theory Algebra 15 (4) (2006) 403–413.
[9] W.K. Nicholson, Lifting idempotents and exchange rings, Tran. Amer. Math. Soc. 229 (1977) 269–278. https://doi.org/10.2307/1998510
[10] W.K. Nicholson, Local group rings, Canad. Math. Bull. 15 (1) (1972) 137–138. https://doi.org/10.4153/CMB-1972-025-1
[11] W.K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J. 46 (2) (2004) 227–236. https://doi.org/10.1017/S0017089504001727
[12] D. Passman, The Algebraic Structure of Group Rings (Dover Publications, 2011).
[13] Y. Qu and J. Wei, Abel rings and super-strongly clean rings, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), (2017), Tomul LXIII, f. 2, 265–272. https://doi.org/10.1515/aicu-2015-0011
[14] X. Wang and H. You, Cleanness of the group ring of an Abelian p-group over a commutative rings, Alg. Colloq. 19 (3) (2012) 539–544. https://doi.org/10.1142/S1005386712000405
[15] Y. Zhou, On clean group rings, Advances in Ring Theory, Trends in Mathematics (2010) 335–345. https://doi.org/10.1007/978-3-0346-0286-0-22