Super strongly clean group rings
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 135-140.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study super strongly clean group rings for different classes of rings and groups. Mainly, we prove the following results: (1) Let R be a ring with 2∈ J(R) and G be a locally finite 2-group. Then the group ring RG is super strongly clean if and only if R is super strongly clean. (2) If R is a local ring with p∈ J(R) and G is a locally finite p-group, then the group ring RG is super strongly clean. (3) If R is an abelian exchange ring with 2∈ J(R) and G is a locally finite 2-group, then the group ring RG is super strongly clean.
Keywords: super strongly clean ring, clean ring, group ring, locally finite p-group
@article{DMGAA_2023_43_1_a11,
     author = {Singh, Amit B. and Kumar, Susheel},
     title = {Super strongly clean group rings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {135--140},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/}
}
TY  - JOUR
AU  - Singh, Amit B.
AU  - Kumar, Susheel
TI  - Super strongly clean group rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 135
EP  - 140
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/
LA  - en
ID  - DMGAA_2023_43_1_a11
ER  - 
%0 Journal Article
%A Singh, Amit B.
%A Kumar, Susheel
%T Super strongly clean group rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 135-140
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/
%G en
%F DMGAA_2023_43_1_a11
Singh, Amit B.; Kumar, Susheel. Super strongly clean group rings. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a11/

[1] J. Chen, W.K. Nicholson and Y. Zhou, Group rings in which every element is uniquely the sum of a unit and an idempotent, J. Algebra 306 (2006) 453–460. https://doi.org/10.1016/j.jalgebra.2006.08.012

[2] J. Chen and Y. Zhou, Strongly clean power series rings, Proceedings of the Edinbergh Mathematical Society 50 (2007) 73–85. https://doi.org/10.1017/S0013091505000404

[3] I.G. Connell, On the group ring, Canad. J. Math. 15 (1963) 650–685. https://doi.org/10.4153/CJM-1963-067-0

[4] J. Han and W.K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001) 2589–2596. https://doi.org/10.1081/AGB-100002409

[5] N.A. Immormino and W.Wm. McGovern, Examples of clean commutative group rings, J. Algebra 405 (2014) 168–178. https://doi.org/10.1016/j.jalgebra.2014.01.030

[6] D. Khurana and C. Kumar, Group rings that are additively generated by idempotents and units. arXiv:0904.0861 [math.RA]

[7] T.Y. Lam, A First Course in Noncommutative Rings (Springer-Verlag, Berlin, 2001).

[8] W. McGovern, A characterization of commutative clean rings, Int. J. Math. Game Theory Algebra 15 (4) (2006) 403–413.

[9] W.K. Nicholson, Lifting idempotents and exchange rings, Tran. Amer. Math. Soc. 229 (1977) 269–278. https://doi.org/10.2307/1998510

[10] W.K. Nicholson, Local group rings, Canad. Math. Bull. 15 (1) (1972) 137–138. https://doi.org/10.4153/CMB-1972-025-1

[11] W.K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J. 46 (2) (2004) 227–236. https://doi.org/10.1017/S0017089504001727

[12] D. Passman, The Algebraic Structure of Group Rings (Dover Publications, 2011).

[13] Y. Qu and J. Wei, Abel rings and super-strongly clean rings, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), (2017), Tomul LXIII, f. 2, 265–272. https://doi.org/10.1515/aicu-2015-0011

[14] X. Wang and H. You, Cleanness of the group ring of an Abelian p-group over a commutative rings, Alg. Colloq. 19 (3) (2012) 539–544. https://doi.org/10.1142/S1005386712000405

[15] Y. Zhou, On clean group rings, Advances in Ring Theory, Trends in Mathematics (2010) 335–345. https://doi.org/10.1007/978-3-0346-0286-0-22