Notes on planar semimodular lattices IX \( \mathcal{C}_1 \)-diagrams
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 25-29.

Voir la notice de l'article provenant de la source Library of Science

A planar semimodular lattice L is slim if 𝖬_3 is not a sublattice of L. In a recent paper, G. Czédli introduced a very powerful diagram type for slim, planar, semimodular lattices, the 𝒞_1-diagrams. This short note proves the existence of such diagrams.
Keywords: $\mathcal{C}_1$-diagrams, slim planar semimodular lattice
@article{DMGAA_2023_43_1_a1,
     author = {Gr\"atzer, George},
     title = {Notes on planar semimodular lattices {IX} \( {\mathcal{C}_1} \)-diagrams},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {25--29},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a1/}
}
TY  - JOUR
AU  - Grätzer, George
TI  - Notes on planar semimodular lattices IX \( \mathcal{C}_1 \)-diagrams
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 25
EP  - 29
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a1/
LA  - en
ID  - DMGAA_2023_43_1_a1
ER  - 
%0 Journal Article
%A Grätzer, George
%T Notes on planar semimodular lattices IX \( \mathcal{C}_1 \)-diagrams
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 25-29
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a1/
%G en
%F DMGAA_2023_43_1_a1
Grätzer, George. Notes on planar semimodular lattices IX \( \mathcal{C}_1 \)-diagrams. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 25-29. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a1/

[1] G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72 (2014) 125–154. https://doi.org/10.1007/s00012-014-0294-z

[2] G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Universalis 72 (2014) 225–230. https://doi.org/10.1007/s00012-014-0286-z

[3] G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices, Algebra Universalis 77 (2017) 443–498. https://doi.org/10.1007/s00012-017-0437-0

[4] G. Czédli, Lamps in slim rectangular planar semimodular lattices, Acta Sci. Math. (Szeged). https://doi.org/10.14232/actasm-021-865-y0

[5] G. Czédli, Non-finite axiomatizability of some finite structures. arXiv:2102.00526

[6] G. Czédli and G. Grätzer, A new property of congruence lattices of slim, planar, semimodular lattices. arXiv:2103.04458

[7] G. Czédli and E.T. Schmidt, Slim semimodular lattices I.} A visual approach, ORDER 29 (2012) 481-497. https://doi.org/10.1007/s11083-011-9215-3

[8] G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381–397. https://doi.org/10.1007/978-3-319-38798-\_25

[9] G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices, Acta Sci. Math. (Szeged) 81 (2015) 25–32. https://doi.org/10.14232/actasm-014-024-1

[10] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, Second Edition (Birkhäuser, 2016). Part I is accessible at arXiv:2104.06539. https://doi.org/10.1007/978-3-319-38798-7

[11] G. Grätzer, Congruences of fork extensions of slim, planar, semimodular lattices, Algebra Universalis 76 (2016) 139–154. https://doi.org/10.1007/s00012-016-0394-z

[12] G. Grätzer, Notes on planar semimodular lattices VIII.} Congruence lattices of SPS lattices, Algebra Universalis 81 (2020). https://doi.org/10.1007/s00012-020-0641-1

[13] G. Grätzer, Applying the Swing Lemma and Czédli diagrams to congruences of planar semimodular lattices. arXiv:214.13444

[14] G. Grätzer, A gentle introduction to congruences of planar semimodular lattices, Presentation at the meeting AAA 101 (Novi Sad, 2021).

[15] G. Grätzer and E. Knapp, Notes on planar semimodular lattices III. Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.

[16] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290–297. https://doi.org/10.4153/cmb-1998-041-7