Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2023_43_1_a1, author = {Gr\"atzer, George}, title = {Notes on planar semimodular lattices {IX} \( {\mathcal{C}_1} \)-diagrams}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {25--29}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a1/} }
TY - JOUR AU - Grätzer, George TI - Notes on planar semimodular lattices IX \( \mathcal{C}_1 \)-diagrams JO - Discussiones Mathematicae. General Algebra and Applications PY - 2023 SP - 25 EP - 29 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a1/ LA - en ID - DMGAA_2023_43_1_a1 ER -
Grätzer, George. Notes on planar semimodular lattices IX \( \mathcal{C}_1 \)-diagrams. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 25-29. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a1/
[1] G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis 72 (2014) 125–154. https://doi.org/10.1007/s00012-014-0294-z
[2] G. Czédli, A note on congruence lattices of slim semimodular lattices, Algebra Universalis 72 (2014) 225–230. https://doi.org/10.1007/s00012-014-0286-z
[3] G. Czédli, Diagrams and rectangular extensions of planar semimodular lattices, Algebra Universalis 77 (2017) 443–498. https://doi.org/10.1007/s00012-017-0437-0
[4] G. Czédli, Lamps in slim rectangular planar semimodular lattices, Acta Sci. Math. (Szeged). https://doi.org/10.14232/actasm-021-865-y0
[5] G. Czédli, Non-finite axiomatizability of some finite structures. arXiv:2102.00526
[6] G. Czédli and G. Grätzer, A new property of congruence lattices of slim, planar, semimodular lattices. arXiv:2103.04458
[7] G. Czédli and E.T. Schmidt, Slim semimodular lattices I.} A visual approach, ORDER 29 (2012) 481-497. https://doi.org/10.1007/s11083-011-9215-3
[8] G. Grätzer, Congruences in slim, planar, semimodular lattices: The Swing Lemma, Acta Sci. Math. (Szeged) 81 (2015) 381–397. https://doi.org/10.1007/978-3-319-38798-\_25
[9] G. Grätzer, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices, Acta Sci. Math. (Szeged) 81 (2015) 25–32. https://doi.org/10.14232/actasm-014-024-1
[10] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach, Second Edition (Birkhäuser, 2016). Part I is accessible at arXiv:2104.06539. https://doi.org/10.1007/978-3-319-38798-7
[11] G. Grätzer, Congruences of fork extensions of slim, planar, semimodular lattices, Algebra Universalis 76 (2016) 139–154. https://doi.org/10.1007/s00012-016-0394-z
[12] G. Grätzer, Notes on planar semimodular lattices VIII.} Congruence lattices of SPS lattices, Algebra Universalis 81 (2020). https://doi.org/10.1007/s00012-020-0641-1
[13] G. Grätzer, Applying the Swing Lemma and Czédli diagrams to congruences of planar semimodular lattices. arXiv:214.13444
[14] G. Grätzer, A gentle introduction to congruences of planar semimodular lattices, Presentation at the meeting AAA 101 (Novi Sad, 2021).
[15] G. Grätzer and E. Knapp, Notes on planar semimodular lattices III. Rectangular lattices, Acta Sci. Math. (Szeged) 75 (2009) 29–48.
[16] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290–297. https://doi.org/10.4153/cmb-1998-041-7