Some remarks on the complement of the Armendariz graph of a commutative ring
Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 5-24.

Voir la notice de l'article provenant de la source Library of Science

Let R be a commutative ring with identity which is not an integral domain. Let Z(R) denote the set of all zero-divisors of R. Recall from that the Armendariz graph of R denoted by A(R) is an undirected graph whose vertex set is Z(R[X])\{0} and distinct vertices f(X) = ∑_i = 0^na_iX^i and g(X) = ∑_j = 0^mb_jX^j are adjacent in A(R) if and only if a_ib_j = 0 for all i∈{0, …, n} and j∈{0, …, m}. The aim of this article is to study the interplay between the graph-theoretic properties of the complement of A(R), that is, (A(R))^c and the ring-theoretic properties of R.
Keywords: B-prime of $(0)$, complement of the zero-divisor graph, diameter, domination number, maximal N-prime of $(0)$, radius
@article{DMGAA_2023_43_1_a0,
     author = {Visweswaran, Subramanian and Patel, Hiren D.},
     title = {Some remarks on the complement of the {Armendariz} graph of a commutative ring},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a0/}
}
TY  - JOUR
AU  - Visweswaran, Subramanian
AU  - Patel, Hiren D.
TI  - Some remarks on the complement of the Armendariz graph of a commutative ring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2023
SP  - 5
EP  - 24
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a0/
LA  - en
ID  - DMGAA_2023_43_1_a0
ER  - 
%0 Journal Article
%A Visweswaran, Subramanian
%A Patel, Hiren D.
%T Some remarks on the complement of the Armendariz graph of a commutative ring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2023
%P 5-24
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a0/
%G en
%F DMGAA_2023_43_1_a0
Visweswaran, Subramanian; Patel, Hiren D. Some remarks on the complement of the Armendariz graph of a commutative ring. Discussiones Mathematicae. General Algebra and Applications, Tome 43 (2023) no. 1, pp. 5-24. http://geodesic.mathdoc.fr/item/DMGAA_2023_43_1_a0/

[1] C. Abdioglu, E.Y. Celikel, and A. Das, The Armendariz graph of a ring, Discuss. Math. Gen. Algebra Appl. 38 (2018) 189–197. https://doi.org/10.7151/dmgaa.1292

[2] D.F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2) (1999) 434–447. https://doi.org/10.1006/jabr.1998.7840

[3] D.F. Anderson, M.C. Axtell, and J.A. Stickles Jr., Zero-divisor graphs in commutative rings, in: Commutative Algebra, Noetherian and Non-Noetherian Perspectives, M. Fontana, S.E. Kabbaj, B. Olberding, I. Swanson (Eds), (Springer-Verlag, New York, 2011) 23–45. https://doi.org/10.1007/978-1-4419-6990-3_2

[4] D.F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean Algebras, J. Pure Appl. Algebra 180 (3) (2003) 221–241. https://doi.org/10.1016/S0022-4049(02)00250-5

[5] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, Massachusetts, 1969).

[6] M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (6) (2005) 2043–2050. https://doi.org/10.1081/AGB-200063357

[7] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory (Universitext, Springer, New York, 2000).

[8] I. Beck, Coloring of commutative rings, J. Algebra 116 (1) (1988) 208–226. https://doi.org/10.1016/0021-8693(88)90202-5

[9] N. Deo, Graph Theory with Applications to Engineering and Computer Science (Prentice -Hall of India Private Limited, New Delhi, 1994).

[10] N. Ganesan, Properties of rings with a finite number of zero-divisors, Math. Ann. 157 (1964) 215–218. https://doi.org/10.1007/BF01362435

[11] R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1) (1980) 13–16. https://doi.org/10.2307/2042378

[12] W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (2) (1971) 273–284. https://doi.org/10.1090/S0002-9947-1971-0280472-2

[13] W. Heinzer and J. Ohm, On the Noetherian-like rings of E.G. Evans, Proc. Amer. Math. Soc. 34 (1) (1972) 73–74. https://doi.org/10.1090/S0002-9939-1972-0294316-2

[14] I. Kaplansky, Commutative Rings (The University of Chicago Press, Chicago, 1974).

[15] T.G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (1) (2006) 174–193. https://doi.org/10.1016/j.jalgebra.2006.01.019

[16] N.H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (5) (1942) 286–295. https://doi.org/10.1080/00029890.1942.11991226

[17] M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A 73 (1997) 14–17. https://doi.org/10. 3792/pjaa.73.14.Source OAI

[18] S. Visweswaran, Some results on the complement of the zero-divisor graph of a commutative ring, J. Algebra Appl. 10 (3) (2011) 573–595. https://doi.org/10.1142/S0219498811004781

[19] S. Visweswaran, Some properties of the complement of the zero-divisor graph of a commutative ring, ISRN Algebra 2011 (Article ID 591041) 24 pages. https://doi.org/10.5402/2011/591041

[20] S. Visweswaran, When does the complement of the zero-divisor graph of a commutative ring admit a cut vertex?, Palestine J. Math. 1 (2) (2012) 138–147.

[21] S. Visweswaran and Pravin Vadhel, On the dominating sets of the complement of the annihilating ideal graph of a commutative ring, Gulf J. Math. 4 (1) (2016) 27–38. https://doi.org/10.56947/gjom.v4i1.54