Intuitionistic Fuzzy Monoids in an Intuitionistic Fuzzy Finite Automaton with Unique Membership Transition on an Input Symbol
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 383-394.

Voir la notice de l'article provenant de la source Library of Science

An intuitionistic fuzzy finite state automaton assigns a membership and nonmembership values in which there is a unique membership transition on an input symbol (IFAUM) is considered. It is proved and illustrated the existence of two different intuitionistic fuzzy monoids F(𝒜) and S_𝒜 from an intuitionistic fuzzy transition function of the given IFAUM 𝒜. Also it is proved that F(𝒜) and S_𝒜 are anti-isomorphic as monoids.
Keywords: intuitionistic fuzzy monoid
@article{DMGAA_2022_42_2_a9,
     author = {Jency Priya, K. and Rajaretnam, T.},
     title = {Intuitionistic {Fuzzy} {Monoids} in an {Intuitionistic} {Fuzzy} {Finite} {Automaton} with {Unique} {Membership} {Transition} on an {Input} {Symbol}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {383--394},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a9/}
}
TY  - JOUR
AU  - Jency Priya, K.
AU  - Rajaretnam, T.
TI  - Intuitionistic Fuzzy Monoids in an Intuitionistic Fuzzy Finite Automaton with Unique Membership Transition on an Input Symbol
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 383
EP  - 394
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a9/
LA  - en
ID  - DMGAA_2022_42_2_a9
ER  - 
%0 Journal Article
%A Jency Priya, K.
%A Rajaretnam, T.
%T Intuitionistic Fuzzy Monoids in an Intuitionistic Fuzzy Finite Automaton with Unique Membership Transition on an Input Symbol
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 383-394
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a9/
%G en
%F DMGAA_2022_42_2_a9
Jency Priya, K.; Rajaretnam, T. Intuitionistic Fuzzy Monoids in an Intuitionistic Fuzzy Finite Automaton with Unique Membership Transition on an Input Symbol. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 383-394. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a9/

[1] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986) 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3

[2] K.T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets Syst. 33 (1989a) 37–46. https://doi.org/10.1016/0165-0114(89)90215-7

[3] K.T. Atanassov, Intuitionistic fuzzy relations, First Scientific Session of the Mathematical Foundation Artificial Intelligence (Sofia IM-MFAIS, 1989b) 1–3.

[4] K.T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets Syst. 61 (2) (1994) 137–142. https://doi.org/10.1016/0165-0114(94)90229-1

[5] K.T. Atanassov, Intuitionistic Fuzzy Sets Theory and Applications (Physica-Verlag, Heidelberg, 1999). https://doi.org/10.1007/978-3-7908-1870-3

[6] Y.B. Jun, Intuitionistic fuzzy finite state machines, J. Appl. Math. Comput. 17 (1–2) (2005) 109–120. https://doi.org/10.1007/BF02936044

[7] Y.B. Jun, Intuitionistic fuzzy finite switchboard state machines, J. Appl. Math. Comput. 20 (1–2) (2006) 315–325. https://doi.org/10.1007/BF02831941

[8] Y.B. Jun, Quotient structures of intuitionistic fuzzy finite state machines, Inform. Sci. 177 (22) (2007) 4977–4986. https://doi.org/10.1016/j.ins.2007.06.008

[9] E.T. Lee and L.A. Zadeh, Note on fuzzy languages, Inform. Sci. 1 (1969) 421–434. https://doi.org/10.1016/0020-0255(69)90025-5

[10] Y.M. Li and Z.K. Shi, Remarks on uninorm aggregation operators, Fuzzy Sets Syst. 114 (2000) 377–380. https://doi.org/10.1016/S0165-0114(98)00247-4

[11] Y.M Li and W. Pedryez, Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoid, Fuzzy Sets Syst. 156 (2005) 68–92. https://doi.org/10.1016/j.fss.2005.04.004

[12] D.S. Malik and J.N. Mordeson, Fuzzy automata and languages, theory and applications, CRC, 2002.

[13] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Language and Computation (Addison-Wesley, 1979).

[14] T. Rajaretnam and A. Ayyaswamy, Fuzzy finite state automaton with unique membership transition on an input Symbol, J. Combin. Math. and Combin. Comput. 69 (2009) 151–164.

[15] S. Eilenburg, Automata, Languages and Machines, Vol. A, (Academic Press, New York, 1976) 17–18.

[16] E.S. Santos, Maximum automata, Inform. Control 12 (1968) 367–377. https://doi.org/10.1016/S0019-9958(68)90123-X

[17] M.K. Sen and G. Chowdhry, Local behaviour of fuzzy automata, J. Fuzzy Math. 9 (4) (2001).

[18] M.G. Thomason and P.N. Marinos, Deterministic acceptors of regular fuzzy languages, IEEE Trans. Syst. Man. Cybern. 4 (1974) 228–230. https://doi.org/10.1109/TSMC.1974.5409123

[19] W.G. Wee and K.S. Fu, A formulation of fuzzy automata and its application as a model of learning systems, IEEE Trans. Syst. Man Cybern. 5 (1969) 215–223. https://doi.org/10.1109/TSSC.1969.300263

[20] M.S. Ying, A formal model of computing with words, IEEE Trans. Fuzzy Syst. 10 (5) (2002) 640–652. https://doi.org/10.1109/TFUZZ.2002.803497

[21] L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

[22] L.A Zadeh, Fuzzy languages and their relation to human and machine intelligence, Electrn. Research Laboratory University California, Berkeley, CA, Technical Report ERL-M302, 1971.

[23] X. Zhang and Y. Li, Intuitionistic fuzzy recognizers and intuitionistic fuzzy finite automata, J. Soft Comput. 13 (2009) 611–616. https://doi.org/10.1007/s00500-008-0338-4