Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2022_42_2_a7, author = {Bhowmick, Sanjit and Pal, Joydeb and Bandi, Ramakrishna and Bagchi, Satya}, title = {Self-Dual {Cyclic} {Codes} {Over} $M_2(\ensuremath{\mathbb{Z}}_4)$}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {349--362}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a7/} }
TY - JOUR AU - Bhowmick, Sanjit AU - Pal, Joydeb AU - Bandi, Ramakrishna AU - Bagchi, Satya TI - Self-Dual Cyclic Codes Over $M_2(ℤ_4)$ JO - Discussiones Mathematicae. General Algebra and Applications PY - 2022 SP - 349 EP - 362 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a7/ LA - en ID - DMGAA_2022_42_2_a7 ER -
%0 Journal Article %A Bhowmick, Sanjit %A Pal, Joydeb %A Bandi, Ramakrishna %A Bagchi, Satya %T Self-Dual Cyclic Codes Over $M_2(ℤ_4)$ %J Discussiones Mathematicae. General Algebra and Applications %D 2022 %P 349-362 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a7/ %G en %F DMGAA_2022_42_2_a7
Bhowmick, Sanjit; Pal, Joydeb; Bandi, Ramakrishna; Bagchi, Satya. Self-Dual Cyclic Codes Over $M_2(ℤ_4)$. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 349-362. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a7/
[1] A. Alahmadi, H. Sboui, P. Solé and O. Yemen, Cyclic codes over $M_2(\mathbb{F}_2)$, J. Franklin Institute 350 (9) (2013) 2837–2847. https://doi.org/10.1016/j.jfranklin.2013.06.023
[2] C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory A 78 (1997) 92–119. https://doi.org/10.1006/jcta.1996.2763
[3] M. Greferath and S.E. Schmidt, Linear codes and rings of matrices, Proceedings of AAECC 13, Hawaii, Springer, LNCS 1719 (1999) 160–169. https://doi.org/10.1007/3-540-46796-3 16
[4] A.R. Hammons Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40 (1994) 301–319. https://doi.org/10.1109/18.312154
[5] R. Luo and U. Parampalli, Cyclic codes over $M_2(\mathbb{F}_2 + u\mathbb{F}_2)$, Cryptography and Communications 10 (6) (2018) 1109–1117. https://doi.org/10.1007/s12095-017-0266-1
[6] F. Oggier, P. Solé and J.C. Belfiore, Codes over matrix rings for space-time coded modulations, IEEE Trans. Inform. Theory 58 (2) (2012) 734–746. https://doi.org/10.1109/TIT.2011.2173732
[7] J. Pal, S. Bhowmick and S. Bagchi, Cyclic codes over \(\mathcal{M}_4(\mathbb{F}_2)\), J. Appl. Math. Comput. 60 (2019) 749–756. https://doi.org/10.1007/s12190-018-01235-w
[8] V. Pless, P. Solé and Z. Qian, Cyclic self-dual $\mathbb{Z}_4$-codes, Finite Fields and Their Appl. 3 (1997) 48–69. https://doi.org/10.1006/ffta.1996.0172
[9] V. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $\mathbb{Z}_4$, IEEE Trans. Inform. Theory 42 (5) (1996) 1594–1600. https://doi.org/10.1109/18.532906
[10] P. Solé, Codes Over Rings (Singapore, World Scientific, 2009). https://doi.org/10.1142/7140
[11] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, 1991). https://doi.org/10.1201/9780203755532