Self-Dual Cyclic Codes Over $M_2(ℤ_4)$
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 349-362.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study the structure of cyclic codes over M_2(ℤ_4) (the matrix ring of matrices of order 2 over ℤ_4), which is perhaps the first time that the ring is considered as a code alphabet. This ring is isomorphic to ℤ_4 [ w ] + U ℤ_4 [w], where w is a root of the irreducible polynomial x^2 + x + 1 ∈ℤ_2 [ x ] and U ≅[ 1 amp; 1; 1 amp; 1 ]. In our work, we first discuss the structure of the ring M_2(ℤ_4) and then focus on the structure of cyclic codes and self-dual cyclic codes over M_2(ℤ_4). Thereafter, we obtain the generators of the cyclic codes and their dual codes. A few non-trivial examples are given at the end of the paper.
Keywords: codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$, Gray map, Lee weight, self-dual codes
@article{DMGAA_2022_42_2_a7,
     author = {Bhowmick, Sanjit and Pal, Joydeb and Bandi, Ramakrishna and Bagchi, Satya},
     title = {Self-Dual {Cyclic} {Codes} {Over} $M_2(\ensuremath{\mathbb{Z}}_4)$},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {349--362},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a7/}
}
TY  - JOUR
AU  - Bhowmick, Sanjit
AU  - Pal, Joydeb
AU  - Bandi, Ramakrishna
AU  - Bagchi, Satya
TI  - Self-Dual Cyclic Codes Over $M_2(ℤ_4)$
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 349
EP  - 362
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a7/
LA  - en
ID  - DMGAA_2022_42_2_a7
ER  - 
%0 Journal Article
%A Bhowmick, Sanjit
%A Pal, Joydeb
%A Bandi, Ramakrishna
%A Bagchi, Satya
%T Self-Dual Cyclic Codes Over $M_2(ℤ_4)$
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 349-362
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a7/
%G en
%F DMGAA_2022_42_2_a7
Bhowmick, Sanjit; Pal, Joydeb; Bandi, Ramakrishna; Bagchi, Satya. Self-Dual Cyclic Codes Over $M_2(ℤ_4)$. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 349-362. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a7/

[1] A. Alahmadi, H. Sboui, P. Solé and O. Yemen, Cyclic codes over $M_2(\mathbb{F}_2)$, J. Franklin Institute 350 (9) (2013) 2837–2847. https://doi.org/10.1016/j.jfranklin.2013.06.023

[2] C. Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory A 78 (1997) 92–119. https://doi.org/10.1006/jcta.1996.2763

[3] M. Greferath and S.E. Schmidt, Linear codes and rings of matrices, Proceedings of AAECC 13, Hawaii, Springer, LNCS 1719 (1999) 160–169. https://doi.org/10.1007/3-540-46796-3 16

[4] A.R. Hammons Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40 (1994) 301–319. https://doi.org/10.1109/18.312154

[5] R. Luo and U. Parampalli, Cyclic codes over $M_2(\mathbb{F}_2 + u\mathbb{F}_2)$, Cryptography and Communications 10 (6) (2018) 1109–1117. https://doi.org/10.1007/s12095-017-0266-1

[6] F. Oggier, P. Solé and J.C. Belfiore, Codes over matrix rings for space-time coded modulations, IEEE Trans. Inform. Theory 58 (2) (2012) 734–746. https://doi.org/10.1109/TIT.2011.2173732

[7] J. Pal, S. Bhowmick and S. Bagchi, Cyclic codes over \(\mathcal{M}_4(\mathbb{F}_2)\), J. Appl. Math. Comput. 60 (2019) 749–756. https://doi.org/10.1007/s12190-018-01235-w

[8] V. Pless, P. Solé and Z. Qian, Cyclic self-dual $\mathbb{Z}_4$-codes, Finite Fields and Their Appl. 3 (1997) 48–69. https://doi.org/10.1006/ffta.1996.0172

[9] V. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $\mathbb{Z}_4$, IEEE Trans. Inform. Theory 42 (5) (1996) 1594–1600. https://doi.org/10.1109/18.532906

[10] P. Solé, Codes Over Rings (Singapore, World Scientific, 2009). https://doi.org/10.1142/7140

[11] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, 1991). https://doi.org/10.1201/9780203755532