Algebraic Geometry Over Complete Lattices and Involutive Pocrims
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 339-347

Voir la notice de l'article provenant de la source Library of Science

An involutive pocrim is a resituated integral partially ordered commutative monoid with an involution operator, consider as an algebra. In this paper it is proved that the variety of a finitely generated by involutive pocrims of finite type has a finitely based equational theory. We also study the algebraic geometry over compete lattices and we investigate the properties of being equationally Noetherian and uω-compact over such lattices.
Keywords: congruence distributive, algebraically closed algebra, involutive pocrims, equationally Noetherian
@article{DMGAA_2022_42_2_a6,
     author = {Molkhasi, Ali and Shum, Kar Ping},
     title = {Algebraic {Geometry} {Over} {Complete} {Lattices} and {Involutive} {Pocrims}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {339--347},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/}
}
TY  - JOUR
AU  - Molkhasi, Ali
AU  - Shum, Kar Ping
TI  - Algebraic Geometry Over Complete Lattices and Involutive Pocrims
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 339
EP  - 347
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/
LA  - en
ID  - DMGAA_2022_42_2_a6
ER  - 
%0 Journal Article
%A Molkhasi, Ali
%A Shum, Kar Ping
%T Algebraic Geometry Over Complete Lattices and Involutive Pocrims
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 339-347
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/
%G en
%F DMGAA_2022_42_2_a6
Molkhasi, Ali; Shum, Kar Ping. Algebraic Geometry Over Complete Lattices and Involutive Pocrims. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 339-347. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/