Algebraic Geometry Over Complete Lattices and Involutive Pocrims
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 339-347.

Voir la notice de l'article provenant de la source Library of Science

An involutive pocrim is a resituated integral partially ordered commutative monoid with an involution operator, consider as an algebra. In this paper it is proved that the variety of a finitely generated by involutive pocrims of finite type has a finitely based equational theory. We also study the algebraic geometry over compete lattices and we investigate the properties of being equationally Noetherian and uω-compact over such lattices.
Keywords: congruence distributive, algebraically closed algebra, involutive pocrims, equationally Noetherian
@article{DMGAA_2022_42_2_a6,
     author = {Molkhasi, Ali and Shum, Kar Ping},
     title = {Algebraic {Geometry} {Over} {Complete} {Lattices} and {Involutive} {Pocrims}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {339--347},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/}
}
TY  - JOUR
AU  - Molkhasi, Ali
AU  - Shum, Kar Ping
TI  - Algebraic Geometry Over Complete Lattices and Involutive Pocrims
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 339
EP  - 347
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/
LA  - en
ID  - DMGAA_2022_42_2_a6
ER  - 
%0 Journal Article
%A Molkhasi, Ali
%A Shum, Kar Ping
%T Algebraic Geometry Over Complete Lattices and Involutive Pocrims
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 339-347
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/
%G en
%F DMGAA_2022_42_2_a6
Molkhasi, Ali; Shum, Kar Ping. Algebraic Geometry Over Complete Lattices and Involutive Pocrims. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 339-347. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/

[1] K. Baker, Finite equational bases for finite algebras in a congruence equational classs, Adv. Math. 24 (1977) 207–243. https://doi.org/10.1016/S0001-8708(77)80043-1

[2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, 1981). https://doi.org/10.1007/978-1-4613-8130-3

[3] S. Burris, Boolean powers, Algebra Univ. 5 (1975) 341–360. https://doi.org/10.1007/BF02485268

[4] W.J. Blok and J.G. Raftery, Varieties of commutative residuated integral pomonoids and their residuation subreducts, J. Algebra, 190 (1997) 280–328. https://doi.org/10.1006/jabr.1996.6834

[5] C.C. Chang and H.J. Keisler, Model theory, Number 73 in Studies in Logic and the Foundation of Mathematics (North-Holland, 1978).

[6] C. De Concini, D. Eisenbud and D. Procesi, Hodge algebras, asterisque, Societe Mathematique de France 91 (1982).

[7] W.H. Cornish, Varieties generated by finite BCK-algebras, Bull. Austral. Math. Soc. 22 (1980) 411–430. https://doi.org/10.1017/S0004972700006730

[8] E. Daniyarova and V. Remeslennikov, Algebraic geometry over algebraic structures III: Equationally Noetherian property and compactness, South. Asian Bull. Math. 35 (2011) 35–68.

[9] R.P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962) 481–498. https://doi.org/10.2140/pjm.1962.12.481

[10] G. Goncharov, Countable Boolean algebras and decidability (Cousultant Baurou, New York, 1997).

[11] B. Jonsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (2005) 110–121. https://doi.org/10.7146/math.scand.a-10850

[12] M. Jenner, P. Jipsen, P. Ouwehand, and H. Rose, Absolute retracts as reduce products, Quaest. Math. 24 (2001) 129–132. https://doi.org/10.1080/16073606.2001.9639200

[13] A. Molkhasi and K.P. Shum, Strongly algebraically closed orthomodular near semirings, Rendiconti del Circolo Matematico di Palermo Series, 26 (9) (2020) 803–812. https://doi.org/10.1007/s12215-019-00434-z

[14] P. Ouwehand, Algebraically closed algebras in certain small congruence distributive varieties, Algebra Univ. 61 (2009) 247–260. https://doi.org/10.1007/s00012-009-0015-1

[15] P. Palfy, Distributive congruence lattices of finite algebras, Acta Sci. Math. (Szeged) 51 (1987) 153–162.

[16] A. Shevlyakov, Algebraic geometry over Boolean algebras in the language with constants, J. Math. Sci. 206 (2015) 724–757. https://doi.org/10.1007/s10958-015-2350-4

[17] A. Wronski and P.S. Krzystek, On pre-Boolean algebras, (preliminary report), manuscript, circa 1982.