Algebraic Geometry Over Complete Lattices and Involutive Pocrims
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 339-347
Voir la notice de l'article provenant de la source Library of Science
An involutive pocrim is a resituated integral partially ordered commutative monoid with an involution operator, consider as an algebra. In this paper it is proved that the variety of a finitely generated by involutive pocrims of finite type has a finitely based equational theory. We also study the algebraic geometry over compete lattices and we investigate the properties of being equationally Noetherian and uω-compact over such lattices.
Keywords:
congruence distributive, algebraically closed algebra, involutive pocrims, equationally Noetherian
@article{DMGAA_2022_42_2_a6,
author = {Molkhasi, Ali and Shum, Kar Ping},
title = {Algebraic {Geometry} {Over} {Complete} {Lattices} and {Involutive} {Pocrims}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {339--347},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/}
}
TY - JOUR AU - Molkhasi, Ali AU - Shum, Kar Ping TI - Algebraic Geometry Over Complete Lattices and Involutive Pocrims JO - Discussiones Mathematicae. General Algebra and Applications PY - 2022 SP - 339 EP - 347 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/ LA - en ID - DMGAA_2022_42_2_a6 ER -
%0 Journal Article %A Molkhasi, Ali %A Shum, Kar Ping %T Algebraic Geometry Over Complete Lattices and Involutive Pocrims %J Discussiones Mathematicae. General Algebra and Applications %D 2022 %P 339-347 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/ %G en %F DMGAA_2022_42_2_a6
Molkhasi, Ali; Shum, Kar Ping. Algebraic Geometry Over Complete Lattices and Involutive Pocrims. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 339-347. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a6/