On the Non-Inverse Graph of a Group
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 315-325.

Voir la notice de l'article provenant de la source Library of Science

Let (G, *) be a finite group and S = u ∈ G|u ≠ u−1, then the inverse graph is defined as a graph whose vertices coincide with G such that two distinct vertices u and v are adjacent if and only if either u * v ∈ S or v * u ∈ S. In this paper, we introduce a modified version of the inverse graph, called i*-graph associated with a group G. The i*-graph is a simple graph with vertex set consisting of elements of G and two vertices x, y ∈ Γ are adjacent if x and y are not inverses of each other. We study certain properties and characteristics of this graph. Some parameters of the i*-graph are also determined.
Keywords: inverse graph, non-inverse graph
@article{DMGAA_2022_42_2_a4,
     author = {Amreen, Javeria and Naduvath, Sudev},
     title = {On the {Non-Inverse} {Graph} of a {Group}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {315--325},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a4/}
}
TY  - JOUR
AU  - Amreen, Javeria
AU  - Naduvath, Sudev
TI  - On the Non-Inverse Graph of a Group
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 315
EP  - 325
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a4/
LA  - en
ID  - DMGAA_2022_42_2_a4
ER  - 
%0 Journal Article
%A Amreen, Javeria
%A Naduvath, Sudev
%T On the Non-Inverse Graph of a Group
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 315-325
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a4/
%G en
%F DMGAA_2022_42_2_a4
Amreen, Javeria; Naduvath, Sudev. On the Non-Inverse Graph of a Group. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 315-325. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a4/

[1] M.R. Alfuraidan and Y.F. Zakariya, Inverse graphs associated with finite groups, Electron. J. Graph Theory Appl. 5 (1) (2017). https://doi.org/10.5614/ejgta.2017.5.1.14

[2] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2) (1999) 434–447. https://doi.org/10.1006/jabr.1998.7840

[3] P.J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311 (13) (2011) 1220–1222. https://doi.org/10.1016/j.disc.2010.02.011

[4] E. Carnia, M. Suyudi, I. Aisah and A.K. Supriatna, A review on eigenvalues of adjacency matrix of graph with cliques, (2017) 040001.

[5] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (17) (2009) 5381–5392. https://doi.org/10.1016/j.disc.2008.11.034

[6] P.M. Cohn, Basic Algebra (Springer, New Delhi, 2003).

[7] F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (1) (2005) 190–198. https://doi.org/https://doi.org/10.1016/j.disc.2008.11.034

[8] T.W. Hungerford, Algebra (Springer, New York, 2008).

[9] B.L. Johnston and F. Richman, Numbers and Symmetry: An Introduction to Algebra (CRC Press, New York, 1997).

[10] J.V. Kureethara, Hamiltonian cycle in complete multipartite graphs, Annal. Pure Appl. Math. 13 (2) (2017) 223–228. https://doi.org/10.22457/apam.v13n2a8

[11] P. Nasehpour, A generalization of zero-divisor graphs, 2019. arXiv preprint arXiv:1911.06244

[12] E.B. Vinberg, A Course in Algebra (Universities Press, New Delhi, 2012).

[13] E.W. Weisstein, Clique Number, From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/CliqueNumber.html

[14] D.B. West, Introduction to Graph Theory (Pearson, New Jersey, 2001).