@article{DMGAA_2022_42_2_a4,
author = {Amreen, Javeria and Naduvath, Sudev},
title = {On the {Non-Inverse} {Graph} of a {Group}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {315--325},
year = {2022},
volume = {42},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a4/}
}
Amreen, Javeria; Naduvath, Sudev. On the Non-Inverse Graph of a Group. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 315-325. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a4/
[1] M.R. Alfuraidan and Y.F. Zakariya, Inverse graphs associated with finite groups, Electron. J. Graph Theory Appl. 5 (1) (2017). https://doi.org/10.5614/ejgta.2017.5.1.14
[2] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (2) (1999) 434–447. https://doi.org/10.1006/jabr.1998.7840
[3] P.J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311 (13) (2011) 1220–1222. https://doi.org/10.1016/j.disc.2010.02.011
[4] E. Carnia, M. Suyudi, I. Aisah and A.K. Supriatna, A review on eigenvalues of adjacency matrix of graph with cliques, (2017) 040001.
[5] I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (17) (2009) 5381–5392. https://doi.org/10.1016/j.disc.2008.11.034
[6] P.M. Cohn, Basic Algebra (Springer, New Delhi, 2003).
[7] F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (1) (2005) 190–198. https://doi.org/https://doi.org/10.1016/j.disc.2008.11.034
[8] T.W. Hungerford, Algebra (Springer, New York, 2008).
[9] B.L. Johnston and F. Richman, Numbers and Symmetry: An Introduction to Algebra (CRC Press, New York, 1997).
[10] J.V. Kureethara, Hamiltonian cycle in complete multipartite graphs, Annal. Pure Appl. Math. 13 (2) (2017) 223–228. https://doi.org/10.22457/apam.v13n2a8
[11] P. Nasehpour, A generalization of zero-divisor graphs, 2019. arXiv preprint arXiv:1911.06244
[12] E.B. Vinberg, A Course in Algebra (Universities Press, New Delhi, 2012).
[13] E.W. Weisstein, Clique Number, From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/CliqueNumber.html
[14] D.B. West, Introduction to Graph Theory (Pearson, New Jersey, 2001).