Extended Annihilating-Ideal Graph of a Commutative Ring
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 279-291.

Voir la notice de l'article provenant de la source Library of Science

Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating-ideal if there exists a nonzero ideal J of R such that IJ = (0) and we use the notation 𝔸(R) for the set of all annihilating-ideals of R. In this paper, we introduce the extended annihilating-ideal graph of R, denoted by 𝔼𝔸𝔾(R). It is the simple graph with vertices 𝔸(R)^∗ = 𝔸(R) {(0)}, and two distinct vertices I and J are adjacent whenever there exist two positive integers n and m such that I^nJ^m = (0) with I^n ≠ (0) and J^m ≠ (0). Here we discuss in detail the diameter and girth of 𝔼𝔸𝔾(R) and investigate the coincidence of 𝔼𝔸𝔾(R) with the annihilating-ideal graph 𝔸𝔾(R). Moreover we propose open questions in this paper.
Keywords: annihilating-ideal graph, extended annihilating-ideal graph
@article{DMGAA_2022_42_2_a2,
     author = {Nithya, S. and Elavarasi, G.},
     title = {Extended {Annihilating-Ideal} {Graph} of a {Commutative} {Ring}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {279--291},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a2/}
}
TY  - JOUR
AU  - Nithya, S.
AU  - Elavarasi, G.
TI  - Extended Annihilating-Ideal Graph of a Commutative Ring
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 279
EP  - 291
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a2/
LA  - en
ID  - DMGAA_2022_42_2_a2
ER  - 
%0 Journal Article
%A Nithya, S.
%A Elavarasi, G.
%T Extended Annihilating-Ideal Graph of a Commutative Ring
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 279-291
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a2/
%G en
%F DMGAA_2022_42_2_a2
Nithya, S.; Elavarasi, G. Extended Annihilating-Ideal Graph of a Commutative Ring. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 279-291. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a2/

[1] G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M.J. Nikmehr and F. Shaveisi, The classification of the annihilating-ideal graph of commutative rings, Algebra Colloq. 21 (2014) 249–256. https://doi.org/10.1142/S1005386714000200

[2] G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr and F. shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. 43 (2013) 1415–1425. https://doi.org/10.1216/RMJ-2013-43-5-1415

[3] M. Ahrari, Sh. A. Safari Sabet and B. Amini, On the girth of the annihilating-ideal graph of a commutative ring, J. Linear and Topological Algebra 4 (2015) 209–216.

[4] G. Alan Cannon, K. M. Neuerburg and S.P. Redmond, Zero-divisor graphs of near-rings and semigroups, Near-rings and Near-fields: Proc. Conf. Near-rings and Near-fields II, (2005) 189–200. https://doi.org/10.1007/1-4020-3391-5 8

[5] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. https://doi.org/10.1006/jabr.1998.7840

[6] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley Publishing Company, London, 1969).

[7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. https://doi.org/10.1016/0021-8693(88)90202-5

[8] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011) 727–739. https://doi.org/10.1142/S0219498811004896

[9] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011) 741–753. https://doi.org/10.1142/S0219498811004902

[10] D. Bennis, J. Mikram and F. Taraza, On the extended zero-divisor graph of a commutative rings, Turk. J. Math. 40 (2016) 376–388. https://doi.org/10.3906/mat-1504-61

[11] G. Chartrand and Ping Zhang, Introduction to Graph Theory (Tata McGraw Hill, India, 2006).

[12] K.R. McLean, Commutative Artinian principal ideal rings, Proc. London Math. Soc. 26 (1973) 249–272. https://doi.org/10.1112/plms/s3-26.2.249

[13] T. Tamizh Chelvam and S. Nithya, Zero-divisor graph of an ideal of a near-ring, Discrete Math. Alg. Appl. 5 (2013) 1350007 (1–11). https://doi.org/10.1142/S1793830913500079

[14] T. Tamizh Chelvam and S. Nithya, Domination in the zero-divisor graph of an ideal of a near-ring, Taiwanese J. Math. 17 (2013) 1613–1625. https://doi.org/10.11650/tjm.17.2013.2739

[15] O. Zariski and P. Samuel, Commutative Algebra, I (Van Nostrand, Princeton, 1958).