Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2022_42_2_a2, author = {Nithya, S. and Elavarasi, G.}, title = {Extended {Annihilating-Ideal} {Graph} of a {Commutative} {Ring}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {279--291}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a2/} }
TY - JOUR AU - Nithya, S. AU - Elavarasi, G. TI - Extended Annihilating-Ideal Graph of a Commutative Ring JO - Discussiones Mathematicae. General Algebra and Applications PY - 2022 SP - 279 EP - 291 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a2/ LA - en ID - DMGAA_2022_42_2_a2 ER -
Nithya, S.; Elavarasi, G. Extended Annihilating-Ideal Graph of a Commutative Ring. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 279-291. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a2/
[1] G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M.J. Nikmehr and F. Shaveisi, The classification of the annihilating-ideal graph of commutative rings, Algebra Colloq. 21 (2014) 249–256. https://doi.org/10.1142/S1005386714000200
[2] G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr and F. shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. 43 (2013) 1415–1425. https://doi.org/10.1216/RMJ-2013-43-5-1415
[3] M. Ahrari, Sh. A. Safari Sabet and B. Amini, On the girth of the annihilating-ideal graph of a commutative ring, J. Linear and Topological Algebra 4 (2015) 209–216.
[4] G. Alan Cannon, K. M. Neuerburg and S.P. Redmond, Zero-divisor graphs of near-rings and semigroups, Near-rings and Near-fields: Proc. Conf. Near-rings and Near-fields II, (2005) 189–200. https://doi.org/10.1007/1-4020-3391-5 8
[5] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434–447. https://doi.org/10.1006/jabr.1998.7840
[6] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley Publishing Company, London, 1969).
[7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. https://doi.org/10.1016/0021-8693(88)90202-5
[8] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011) 727–739. https://doi.org/10.1142/S0219498811004896
[9] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011) 741–753. https://doi.org/10.1142/S0219498811004902
[10] D. Bennis, J. Mikram and F. Taraza, On the extended zero-divisor graph of a commutative rings, Turk. J. Math. 40 (2016) 376–388. https://doi.org/10.3906/mat-1504-61
[11] G. Chartrand and Ping Zhang, Introduction to Graph Theory (Tata McGraw Hill, India, 2006).
[12] K.R. McLean, Commutative Artinian principal ideal rings, Proc. London Math. Soc. 26 (1973) 249–272. https://doi.org/10.1112/plms/s3-26.2.249
[13] T. Tamizh Chelvam and S. Nithya, Zero-divisor graph of an ideal of a near-ring, Discrete Math. Alg. Appl. 5 (2013) 1350007 (1–11). https://doi.org/10.1142/S1793830913500079
[14] T. Tamizh Chelvam and S. Nithya, Domination in the zero-divisor graph of an ideal of a near-ring, Taiwanese J. Math. 17 (2013) 1613–1625. https://doi.org/10.11650/tjm.17.2013.2739
[15] O. Zariski and P. Samuel, Commutative Algebra, I (Van Nostrand, Princeton, 1958).