Generalized Andrásfai Graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 449-462.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce a new family of circulants GA(t, k), called Generalized Andrásfai graphs, where t, k ≥ 2 are integers. We study various parameters like diameter, girth, domination number etc. of GA(t, k). Moreover, we find the full automorphism group of GA(t, k) and compute its determining number.
Keywords: circulant graph, automorphism group
@article{DMGAA_2022_42_2_a13,
     author = {Biswas, Sucharita and Das, Angsuman and Saha, Manideepa},
     title = {Generalized {Andr\'asfai} {Graphs}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {449--462},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a13/}
}
TY  - JOUR
AU  - Biswas, Sucharita
AU  - Das, Angsuman
AU  - Saha, Manideepa
TI  - Generalized Andrásfai Graphs
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 449
EP  - 462
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a13/
LA  - en
ID  - DMGAA_2022_42_2_a13
ER  - 
%0 Journal Article
%A Biswas, Sucharita
%A Das, Angsuman
%A Saha, Manideepa
%T Generalized Andrásfai Graphs
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 449-462
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a13/
%G en
%F DMGAA_2022_42_2_a13
Biswas, Sucharita; Das, Angsuman; Saha, Manideepa. Generalized Andrásfai Graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 449-462. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a13/

[1] B. Andrásfai, Graphentheoretische Extremalprobleme, Acta Math. Acad. Sci. Hungar. 15 (1964) 413–438. https://doi.org/10.1007/BF01897150

[2] D.L. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Combin. 13 2006. https://doi.org/10.37236/1104

[3] O. Ebsen and M. Schacht, Homomorphism threshold for odd cycles, Combinatorica 40 (2020) 39–62. https://doi.org/10.1007/s00493-019-3920-8

[4] C. Godsil and G.F. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207 (Springer-Verlag, 2001).

[5] S. Letzter and R. Snyder, The homomorphism threshold of {C3, C5}-free graphs, J. Graph Theory 90 (2019) 83–106. https://doi.org/10.1002/jgt.22369

[6] S.B. Pejman, S. Payrovi and A. Behtoei, Metric dimension of Andrásfai Graphs, Opuscula Math. 39 (3) (2019) 415–423. https://doi.org/10.7494/OpMath.2019.39.3.415