Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2022_42_2_a13, author = {Biswas, Sucharita and Das, Angsuman and Saha, Manideepa}, title = {Generalized {Andr\'asfai} {Graphs}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {449--462}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a13/} }
TY - JOUR AU - Biswas, Sucharita AU - Das, Angsuman AU - Saha, Manideepa TI - Generalized Andrásfai Graphs JO - Discussiones Mathematicae. General Algebra and Applications PY - 2022 SP - 449 EP - 462 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a13/ LA - en ID - DMGAA_2022_42_2_a13 ER -
Biswas, Sucharita; Das, Angsuman; Saha, Manideepa. Generalized Andrásfai Graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 449-462. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a13/
[1] B. Andrásfai, Graphentheoretische Extremalprobleme, Acta Math. Acad. Sci. Hungar. 15 (1964) 413–438. https://doi.org/10.1007/BF01897150
[2] D.L. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Combin. 13 2006. https://doi.org/10.37236/1104
[3] O. Ebsen and M. Schacht, Homomorphism threshold for odd cycles, Combinatorica 40 (2020) 39–62. https://doi.org/10.1007/s00493-019-3920-8
[4] C. Godsil and G.F. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207 (Springer-Verlag, 2001).
[5] S. Letzter and R. Snyder, The homomorphism threshold of {C3, C5}-free graphs, J. Graph Theory 90 (2019) 83–106. https://doi.org/10.1002/jgt.22369
[6] S.B. Pejman, S. Payrovi and A. Behtoei, Metric dimension of Andrásfai Graphs, Opuscula Math. 39 (3) (2019) 415–423. https://doi.org/10.7494/OpMath.2019.39.3.415