A Study on Fibonacci and Lucas Bihypernomials
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 409-423.

Voir la notice de l'article provenant de la source Library of Science

The bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the bihyperbolic Lucas numbers, respectively.
Keywords: Fibonacci numbers, recurrence relations, hyperbolic numbers, bihyperbolic numbers, polynomials
@article{DMGAA_2022_42_2_a11,
     author = {Szynal-Liana, Anetta and W{\l}och, Iwona},
     title = {A {Study} on {Fibonacci} and {Lucas} {Bihypernomials}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {409--423},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a11/}
}
TY  - JOUR
AU  - Szynal-Liana, Anetta
AU  - Włoch, Iwona
TI  - A Study on Fibonacci and Lucas Bihypernomials
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 409
EP  - 423
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a11/
LA  - en
ID  - DMGAA_2022_42_2_a11
ER  - 
%0 Journal Article
%A Szynal-Liana, Anetta
%A Włoch, Iwona
%T A Study on Fibonacci and Lucas Bihypernomials
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 409-423
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a11/
%G en
%F DMGAA_2022_42_2_a11
Szynal-Liana, Anetta; Włoch, Iwona. A Study on Fibonacci and Lucas Bihypernomials. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 2, pp. 409-423. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_2_a11/

[1] M. Bicknell, A primer for the Fibonacci numbers: part VII, Fibonacci Quart. 8 (1970) 407–420.

[2] M. Bicknell and V.E. Hoggatt Jr., Roots of Fibonacci polynomials, Fibonacci Quart. 11 (1973) 271–274.

[3] M. Bilgin and S. Ersoy, Algebraic Properties of Bihyperbolic Numbers, Adv. Appl. Clifford Algebr. 30 (13) (2020). https://doi.org/10.1007/s00006-019-1036-2

[4] D. Bród, A. Szynal-Liana and I. Włoch, Bihyperbolic numbers of the Fibonacci type and their idempotent representation, Comment. Math. Univ. Carolin. 62 (4) (2021) 409–416. https://doi.org/10.14712/1213-7243.2021.033

[5] D. Bród, A. Szynal-Liana and I. Włoch, On some combinatorial properties of bihyperbolic numbers of the Fibonacci type, Math. Methods Appl. Sci. 44 (2021) 4607–4615. https://doi.org/10.1002/mma.7054

[6] P. Catarino, The h(x)-Fibonacci Quaternion Polynomials: Some Combinatorial Properties, Adv. Appl. Clifford Algebr. 26 (71) (2016). https://doi.org/10.1007/s00006-015-0606-1

[7] J. Cockle, On a new imaginary in algebra, Lond. Edinb. Dubl. Phil. Mag. 34 (1849) 37–47. https://doi.org/10.1080/14786444908646169

[8] J. Cockle, On certain functions resembling quaternions, and on a new imaginary in algebra, Lond. Edinb. Dubl. Phil. Mag. 33 (1848) 435–439. https://doi.org/10.1080/14786444808646139

[9] J. Cockle, On impossible equations, on impossible quantities, and on tessarines, Lond. Edinb. Dubl. Phil. Mag. 37 (1850) 281–283. https://doi.org/10.1080/14786445008646598

[10] J. Cockle, On the symbols of algebra, and on the theory of tesarines, Lond. Edinb. Dubl. Phil. Mag. 34 (1849) 406–410. https://doi.org/10.1080/14786444908646257

[11] T. Horzum and E.G. Kocer, On Some Properties of Horadam Polynomials, Int. Math. Forum 25 (2009) 1243–1252.

[12] Y. Li, On Chebyshev Polynomials, Fibonacci Polynomials, and Their Derivatives, J. Appl. Math. (2014) Article ID 451953, 8 pages. https://doi.org/10.1155/2014/451953

[13] Y. Li, Some properties of Fibonacci and Chebyshev polynomials, Adv. Difference Equ. 2015 (118) (2015). https://doi.org/10.1186/s13662-015-0420-z

[14] E. Özkan and İ. Altun, Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Comm. Algebra 47 (10) (2019) 4020–4030. https://doi.org/10.1080/00927872.2019.1576186

[15] A.A. Pogorui, R.M. Rodríguez-Dagnino and R.D. Rodríguez-Said, On the set of zeros of bihyperbolic polynomials, Complex Var. Elliptic Equ. 53 (2008). https://doi.org/10.1080/17476930801973014

[16] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea Fasc. Mat. 11 (2004) 71–110.

[17] G. Sobczyk, The Hyperbolic Number Plane, College Math. J. 26 (1995). https://doi.org/10.1080/07468342.1995.11973712

[18] A. Szynal-Liana and I. Włoch, Hypercomplex numbers of the Fibonacci type (Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2019).

[19] Y. Yuan and W. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quart. 40 (2002) 314–318.

[20] W.A. Webb and E.A. Parberry, Divisibility properties of Fibonacci polynomials, Fibonacci Quart. 7 (1969) 457–463.