Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2022_42_1_a5, author = {Oyem, A. and Jaiy\'eọl\'a, T.G. and Olaleru, J.O.}, title = {Order of {Finite} {Soft} {Quasigroups} with {Application} to {Egalitarianism}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {135--157}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a5/} }
TY - JOUR AU - Oyem, A. AU - Jaiyéọlá, T.G. AU - Olaleru, J.O. TI - Order of Finite Soft Quasigroups with Application to Egalitarianism JO - Discussiones Mathematicae. General Algebra and Applications PY - 2022 SP - 135 EP - 157 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a5/ LA - en ID - DMGAA_2022_42_1_a5 ER -
%0 Journal Article %A Oyem, A. %A Jaiyéọlá, T.G. %A Olaleru, J.O. %T Order of Finite Soft Quasigroups with Application to Egalitarianism %J Discussiones Mathematicae. General Algebra and Applications %D 2022 %P 135-157 %V 42 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a5/ %G en %F DMGAA_2022_42_1_a5
Oyem, A.; Jaiyéọlá, T.G.; Olaleru, J.O. Order of Finite Soft Quasigroups with Application to Egalitarianism. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 135-157. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a5/
[1] A. Albert and A. Baer, Quasigroups II, Trans. Amer. Math. Soc. 55 (1944) 401–419. https://doi.org/10.2307/1990259
[2] H. Aktas and N. Cagman, Soft sets and soft groups, Inf. Sci. 177 (2007) 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008
[3] H. Aktas and S. Ozlu, Cyclic soft groups and their applications on groups, The Scientific World Journal (2014). Article Id 437324, pp. 5. https://doi.org/10.1155/2014/437324
[4] Aristotle, Nicomachean Ethics, in: The complete works of Aristotle, ed. J. Barnes, Princeton, Princeton University Press.
[5] Aristotle, Politics, in: The complete works of Aristotle, ed. J. Barnes, Princeton, Princeton University Press. https://doi.org/10.1515/9781400835850-015
[6] S. Aslihan and O. Atagun, Soft groups and normalistic soft groups, Comput. and Maths with Appl. 62 (2011) 685–698. https://doi.org/10.1016/j.camwa.2011.05.050
[7] S. Aslihan, A. Shahzad and M. Adnan, A new operation on soft sets: Extended difference of soft sets, J. New Theory 27 (2019) 33–42.
[8] M. Bronfenbrenner, Equality and equity, The Annals of the American Academy of Political and Social Science 409 (1973) 9–23. https://doi.org/10.1177/000271627340900103
[9] R.H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946) 245–354. https://doi.org/10.1090/S0002-9947-1946-0017288-3
[10] D. Chen, C. Tsang, D. Yeung and X. Wang, The parameterization reduction of soft sets and its applications, Comput. Math. Appl. 49 (2005) 757–763. https://doi.org/10.1016/j.camwa.2004.10.036
[11] O. Chein, O.H. Pflugfelder and J.D. Smith, Quasigroups and Loops, Theory and Applications (Heldermann Verlag, 1990).
[12] T.G. Jaiyéọlá, Some necessary and sufficient condition for parastrophic invariance of the associative law in quasigroup, Fasc. Math. 40 (2008) 23–35.
[13] T.G. Jaiyéọlá, A study of new concepts in smarandache quasigroups and loop, Pro-Quest Information and Learning (ILQ), Ann Arbor (2009).
[14] K. Huseyin, O. Akin and A. Emin, Difference operations of soft matrices with application in decision making, Punjab Univ. J. Maths. 51 (2019) 1–21.
[15] K. Maji, A.R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077–1083. https://doi.org/10.1016/S0898-1221(02)00215-X
[16] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19–31. https://doi.org/10.1016/50898-1221(99)00056-5
[17] V.E. Nistala and G. Emandi, Representation of soft substructures of a soft groups, IOSR J. Maths. 15 (2019) 41–48. https://doi.org/10.9790/5728-1505034148
[18] S. Ayub, M. Shabir and W. Mahmood, New types of soft rough sets in groups based on normal soft groups, Comput. Appl. Math. 39 (2) (2020) pp. 15. https://doi.org/10.1007/s40314-020-1098-8
[19] B.V. Sai, P.D. Srinivasu and N.V. Murthy, Soft sets-motivation and overview, Global J. Pure and Appl. Math. 15 (6) (2019) 1057–1068. https://doi.org/10.37622/GJPAM/15.6.2019.1055-1067
[20] A. Sezgin and A.O. Atagun, On Operations of soft sets, Comput. Math. Appl. 61 (2011) 1457–1467. https://doi.org/10.1016/jcamwa.2011.01.018
[21] Z. Pawlak, Rough sets, Int. J. Comp. Inform. Sci. 11 (5) (1982) 341–356. https://doi.org/10.1007/BF01001956
[22] H.O. Pflugfelder, Quasigroups and Loops: Introduction. Sigma Series in Pure Math. 7 (Heldermann Verlag, Berlin, 1990).
[23] Z. Ping and W. Qiaoyan, Operations on soft set, J. Appl. Math., Article Id 105752 (2013). https://doi.org/10.1155/2013/105752
[24] L. Vijayalakshmi and J. Vimala, On Lattice ordered soft groups, Int. J. Pure Appl. Math. 12 (2017) 47–55. https://doi.org/10.12732/ijpam.v112i1.3
[25] W. Wall, Drury: Subquasigroups of finite quasigroup, Pacific J. Math. 7 (4) (1957) 1711–1714. https://projecteuclid.org/euclid.pjm/1103043242
[26] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X