Stone Commutator Lattices and Baer Rings
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 51-96.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we transfer Davey‘s characterization for κ -Stone bounded distributive lattices to lattices with certain kinds of quotients, in particular to commutator lattices with certain properties, and obtain related results on prime, radical, complemented and compact elements, annihilators and congruences of these lattices. We then apply these results to certain congruence lattices, in particular to those of semiprime members of semi-degenerate congruence-modular varieties, and use this particular case to transfer Davey‘s Theorem to commutative unitary rings.
Keywords: (strongly) Stone lattice, commutator lattice, annihilator, modular commutator, Baer ring
@article{DMGAA_2022_42_1_a3,
     author = {Mure\c{s}an, Claudia},
     title = {Stone {Commutator} {Lattices} and {Baer} {Rings}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {51--96},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a3/}
}
TY  - JOUR
AU  - Mureşan, Claudia
TI  - Stone Commutator Lattices and Baer Rings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 51
EP  - 96
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a3/
LA  - en
ID  - DMGAA_2022_42_1_a3
ER  - 
%0 Journal Article
%A Mureşan, Claudia
%T Stone Commutator Lattices and Baer Rings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 51-96
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a3/
%G en
%F DMGAA_2022_42_1_a3
Mureşan, Claudia. Stone Commutator Lattices and Baer Rings. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 51-96. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a3/

[1] P. Agliano, Prime spectra in modular varieties, Algebra Univ. 30 (1993) 581–597. https://doi.org/10.1007/BF01195383

[2] E. Aichinger, Congruence lattices forcing nilpotency, J. Algebra and Its Appl. 17 (2) (2018). https://doi.org/10.1142/S0219498818500330

[3] L.P. Belluce, Spectral spaces and non-commutative rings, Commun. in Algebra 19 (7) (1991) 1855–1865. https://doi.org/10.1080/00927879108824234

[4] L.P. Belluce, Spectral closure for non-commutative rings, Commun. in Algebra 25 (5) (1997) 1513–1536. https://doi.org/10.1080/00927879708825933

[5] J. Czelakowski, Additivity of the commutator and residuation, Rep. Math. Logic 43 (2008) 109–132. https://doi.org/10.1007/978-3-319-21200-5

[6] B.A. Davey, m-stone lattices, Canad. J. Math. 24 (6) (1972) 1027–1032. https://doi.org/10.4153/CJM-1972-104-x

[7] R. Freese and R. McKenzie, Commutator Theory for Congruence-modular Varieties, London Mathematical Society Lecture Note Series 125 (Cambridge University Press, 1987). https://doi.org/10.1112/blms/20.4.362

[8] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and The Foundations of Mathematics 151 (Elsevier, Amsterdam/ Boston /Heidelberg /London /New York /Oxford /Paris /San Diego/San Francisco /Singapore /Sydney /Tokyo, 2007). https://doi.org/10.1016/s0049-237x(07)x8002-9

[9] G. Georgescu and C. Mureşan, Congruence Boolean lifting property, J. Multiple-Valued Logic and Soft Comp. 29 (3–4) (2017) 225–274.

[10] G. Georgescu and C. Mureşan, The reticulation of a universal algebra, Sci. Ann. Comp. Sci. XXVIII (2018) 67–113. https://doi.org/10.7561/SACS.2018.1.67

[11] J.E. Kist, Two characterizations of commutative Baer rings, Pacific J. Math. 50 (1974). https://doi.org/10.2140/pjm.1974.50.125

[12] A. Iorgulescu, Algebras of Logic as BCK Algebras (Editura ASE, Bucharest, 2008).

[13] A. Joyal, Le théorème de Chevalley-Tarski et Remarques sur l‘algèbre constructive, Cahiers Topol. Géom. Différ. 16 (1975) 256–258.

[14] C. Mureşan, Algebras of Many-valued Logic. Contributions to the Theory of Residuated Lattices, Ph.D. Thesis, 2009.

[15] C. Mureşan, Co-stone residuated lattices, Annals of the University of Craiova, Math. Comp. Sci. Ser. 40 (2013) 52–75. https://doi.org/10.7561/SACS.2018.1.67

[16] P. Ouwehand, Commutator Theory and Abelian Algebras. arXiv:1309.0662 [math.RA].

[17] D. Piciu, Algebras of Fuzzy Logic (Editura Universitaria Craiova, Craiova, 2007).

[18] D. Schweigert, Tolerances and commutators on lattices, Bull. Austral. Math. Soc. 37 (2) (1988) 213–219. https://doi.org/10.1017/S0004972700026745

[19] H. Simmons, Reticulated rings, J. Algebra 66 (1980) 169–192. https://doi.org/10.1016/0021-8693(80)90118-0