Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2022_42_1_a1, author = {Bakhshi, Mahmood}, title = {Hyper {RL-Ideals} in {Hyper} {Residuated} {Lattices}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {17--29}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a1/} }
Bakhshi, Mahmood. Hyper RL-Ideals in Hyper Residuated Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 17-29. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a1/
[1] M. Bakhshi, Nodal filters in residuated lattices, J. Intel. Fuzzy Syst. 30 (2016) 2555–2562. https://doi.org/10.3233/IFS-151804
[2] T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer-Verlag, 2005).
[3] R.A. Borzooei, M. Bakhshi and O. Zahiri, Filter theory of hyper residuated lattices, Quasigroups Related Syst. 22 (2014) 33–50.
[4] R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, On hyper K-algebras, J. Math. Japonica 1 (2000) 3305–3313.
[5] C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490. https://doi.org/10.1090/S0002-9947-1958-0094302-9
[6] Sh. Ghorbani, A. Hasankhani and E. Eslami, Hyper MV-algebra, Set-Valued Math. Appl. 1 (2008) 205–222.
[7] P. Hájek, Metamathematics of Fuzzy Logic (Kluwer Academic Publisher, Dordrecht, 1998).
[8] J. Mittas and M. Konstantinidou, Sur un novelle génération de la notion de treillis. Les supertreillis et certaines de leurs proprités générals, Ann. Sci. Univ. Blaise Pascal (Clermont II), Sér. Math. Fasc. 25 (1989) 61–83.
[9] H.P. Sankapanavar and S. Burris, A Course in universal algebra, Graduated Text Math. 78 (1981).
[10] M. Ward and R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335–354. https://doi.org/10.2307/1990008
[11] O. Zahiri, R.A. Borzooei and M. Bakhshi, Quotient hyper residuated lattices, Quasi-groups Related Syst. 20 (2012) 125–138.