Hyper RL-Ideals in Hyper Residuated Lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 17-29.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we introduce the notion of a (strong) hyper RL-ideal in hyper residuated lattices and give some properties and characterizations of them. Next, we characterize the (strong) hyper RL-ideals generated by a subset and give some characterizations of the lattice of these hyper RL-ideals. Particularly, we prove that this lattice is algebraic and compact elements are finitely generated hyper RL-ideals, and obtain some isomorphism theorems. Finally, we introduce the notion of nodal hyper RL-ideals in a hyper residuated lattice and investigate their properties. We prove that the set of nodal hyper RL-ideals is a complete Brouwerian lattice and under suitable operations is a Heyting algebra.
Keywords: residuated lattice, MV-algebra, BL-algebra, hyper residuated lattice, hyper ideal
@article{DMGAA_2022_42_1_a1,
     author = {Bakhshi, Mahmood},
     title = {Hyper {RL-Ideals} in {Hyper} {Residuated} {Lattices}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a1/}
}
TY  - JOUR
AU  - Bakhshi, Mahmood
TI  - Hyper RL-Ideals in Hyper Residuated Lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2022
SP  - 17
EP  - 29
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a1/
LA  - en
ID  - DMGAA_2022_42_1_a1
ER  - 
%0 Journal Article
%A Bakhshi, Mahmood
%T Hyper RL-Ideals in Hyper Residuated Lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2022
%P 17-29
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a1/
%G en
%F DMGAA_2022_42_1_a1
Bakhshi, Mahmood. Hyper RL-Ideals in Hyper Residuated Lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 42 (2022) no. 1, pp. 17-29. http://geodesic.mathdoc.fr/item/DMGAA_2022_42_1_a1/

[1] M. Bakhshi, Nodal filters in residuated lattices, J. Intel. Fuzzy Syst. 30 (2016) 2555–2562. https://doi.org/10.3233/IFS-151804

[2] T.S. Blyth, Lattices and Ordered Algebraic Structures (Springer-Verlag, 2005).

[3] R.A. Borzooei, M. Bakhshi and O. Zahiri, Filter theory of hyper residuated lattices, Quasigroups Related Syst. 22 (2014) 33–50.

[4] R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, On hyper K-algebras, J. Math. Japonica 1 (2000) 3305–3313.

[5] C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490. https://doi.org/10.1090/S0002-9947-1958-0094302-9

[6] Sh. Ghorbani, A. Hasankhani and E. Eslami, Hyper MV-algebra, Set-Valued Math. Appl. 1 (2008) 205–222.

[7] P. Hájek, Metamathematics of Fuzzy Logic (Kluwer Academic Publisher, Dordrecht, 1998).

[8] J. Mittas and M. Konstantinidou, Sur un novelle génération de la notion de treillis. Les supertreillis et certaines de leurs proprités générals, Ann. Sci. Univ. Blaise Pascal (Clermont II), Sér. Math. Fasc. 25 (1989) 61–83.

[9] H.P. Sankapanavar and S. Burris, A Course in universal algebra, Graduated Text Math. 78 (1981).

[10] M. Ward and R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45 (1939) 335–354. https://doi.org/10.2307/1990008

[11] O. Zahiri, R.A. Borzooei and M. Bakhshi, Quotient hyper residuated lattices, Quasi-groups Related Syst. 20 (2012) 125–138.