Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_2_a9, author = {Lekkoksung, Nareupanat and Lekkoksung, Somsak}, title = {On {Partial} {Clones} of {k-Terms}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {361--379}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a9/} }
TY - JOUR AU - Lekkoksung, Nareupanat AU - Lekkoksung, Somsak TI - On Partial Clones of k-Terms JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 361 EP - 379 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a9/ LA - en ID - DMGAA_2021_41_2_a9 ER -
Lekkoksung, Nareupanat; Lekkoksung, Somsak. On Partial Clones of k-Terms. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 361-379. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a9/
[1] P. Burmeister, Partial algebras—an introductory survey (Springer, Dordrecht, 1993).
[2] M. Couceiro and E. Lehtonen, Galois theory for sets of operations closed under permutation, cylindrification, and composition, Algebra universalis 67 (2012) 273–297. https://doi.org/10.1007/s00012-012-0184-1
[3] K. Denecke, The partial clone of linear terms, Sib. Math. J. 57 (2016) 589–598. https://doi.org/10.17377/smzh.2016.57.403
[4] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, in: Contributions to General Algebra 7, Dietmar Dorninger (Ed(s)), (Verlag Hölder-Plchler-Tempsky, 1991) 97–118.
[5] K. Denecke and S.L. Wismath, Hyperidentities and clones (CRC Press, 2000).
[6] K. Denecke and S.L. Wismath, Complexity of terms, composition, and hypersubstitution, Int. J. Math. Math. Sci. 2003 (2003) 959–969. https://doi.org/10.1155/S0161171203202118
[7] R.M. Dicker, The substitutive law, Proc. London Math. Soc. 13 (1963) 493–510. https://doi.org/10.1112/plms/s3-13.1.493
[8] P. Jampachon, Clone of Terms and M -Solid Varieties, Ph.D. Thesis (Universität Potsdam, 2007).
[9] J. Koppitz and K. Denecke, M-solid Varieties of Algebras (Springer Science & Business Media, 2006).
[10] D. Lau, Function algebras on finite sets: Basic course on many-valued logic and clone theory (Springer Science & Business Media, 2006).
[11] S. Leeratanavalee and K. Denecke, Generalized hypersubstitutions and strongly solid varieties, in: General Algebra and Applications, Proceedings of the “59th Workshop on General Algebra”, “15th Conference for Young Algebraists”, Potsdam, Klaus Denecke (Ed(s)), (Shaker-Verlag, 2000) 135–146.
[12] N. Lekkoksung and P. Jampachon, Non-deterministic linear hypersubstitutions, Discuss. Math. Gen. Algebra Appl. 35 (2015) 97–103. https://doi.org/10.7151/dmgaa.1230
[13] L. Lohapan and P. Jampachon, Semigroup properties of linear terms, Asian-Eur. J. Math. 10 (2017) 1750051-1–1750051-11. https://doi.org/10.1142/S1793557117500516
[14] D. Phusanga and J. Koppitz, The semigroup of linear terms, Asian-Eur. J. Math. 12 (2019) 2050005-1–2050005-9. https://doi.org/10.1142/S1793557120500059
[15] B.M. Schein and V.S. Trohimenko, Algebras of multiplace functions, Semigroup Forum 17 (1979) 1–64. https://doi.org/10.1007/BF02194309
[16] W. Taylor, Abstract Clone Theory, in: Algebras and Orders. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 389, Ivo G. Rosenberg and Gert Sabidussi (Ed(s)), (Springer, Dordrecht, 1993) 507–530. https://doi.org/10.1007/978-94-017-0697-1_11