@article{DMGAA_2021_41_2_a5,
author = {Selikh, Bilel and Mihoubi, Douadi and Ghadbane, Nacer},
title = {Classification of {Elements} in {Elliptic} {Curve} {Over} the {Ring} {\(\mathbb{F}_{q}[\varepsilon]\)}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {283--298},
year = {2021},
volume = {41},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a5/}
}
TY - JOUR
AU - Selikh, Bilel
AU - Mihoubi, Douadi
AU - Ghadbane, Nacer
TI - Classification of Elements in Elliptic Curve Over the Ring \(\mathbb{F}_{q}[\varepsilon]\)
JO - Discussiones Mathematicae. General Algebra and Applications
PY - 2021
SP - 283
EP - 298
VL - 41
IS - 2
UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a5/
LA - en
ID - DMGAA_2021_41_2_a5
ER -
%0 Journal Article
%A Selikh, Bilel
%A Mihoubi, Douadi
%A Ghadbane, Nacer
%T Classification of Elements in Elliptic Curve Over the Ring \(\mathbb{F}_{q}[\varepsilon]\)
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 283-298
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a5/
%G en
%F DMGAA_2021_41_2_a5
Selikh, Bilel; Mihoubi, Douadi; Ghadbane, Nacer. Classification of Elements in Elliptic Curve Over the Ring \(\mathbb{F}_{q}[\varepsilon]\). Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 283-298. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a5/
[1] W. Bosma and H.W. Lenstra, Complete System of Two Addition Laws for Elliptic Curves, J. Number Theory 53 (1995) 229–240. https://doi.org/10.1006/jnth.1995.1088
[2] A. Boulbot, A. Chillali and A. Mouhib, Elliptic curves over the ring \(\mathbb{F}_{q}[e], e^3 = e^2\), Gulf J. Math. 4 (2016) 123–129.
[3] A. Boulbot, A. Chillali and A. Mouhib, Elliptic curves over the ring R, Boletim da Sociedade Paranaense de Matematica 38 (2017) 193–201. https://doi.org/10.5269/bspm.v38i3.39868
[4] A. Boulbot, A. Chillali and A. Mouhib, Elliptic curve over a finite ring generated by 1 and an idempotent element ɛ with coefficients in the finite field \(\mathbb{F}_{3^d}\), Boletim da Sociedade Paranaense de Matematica (2018) 1–19. https://doi.org/10.5269/bspm.43654
[5] A. Chillali, Elliptic Curves of the Ring \(\mathbb{F}_{q}[\varepsilon], \varepsilon^n = 0\), Internat. Math. 6 (2011) 1501–1505.
[6] H.W. Lenstra, Jr., Elliptic curves and number-theoretic algorithms (Proceedings of the International Congress of Mathematicians, Berkely, California, USA, 1986).
[7] N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987) 203–209. https://doi.org/10.1090/S0025-5718-1987-0866109-5
[8] V. Miller, Use of elliptic curves in cryptography, Advanced cryptology-CRYPTO’85 218 (1986) 417–426. https://doi.org/10.1007/3-540-39799-X_−31
[9] J.H. Silverman, Advanced topics in the arithmetic of elliptic curves (Springer-Verlag, 1994). https://doi.org/10.1007/978-1-4612-0851-8
[10] M. Virat, Courbe elliptique sur un anneau et applications cryptographiques, Doctoral thesis (Universite Nice-Sophia Antipolis, Nice, France, 2009).