Quasi-Complemented BE-Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 265-282.

Voir la notice de l'article provenant de la source Library of Science

The concept of O-filters is introduced in commutative BE-algebras. An equivalent condition is derived for every strong regular filter of a BE-algebra to become an O-filter. The concept of quasi-complemented BE-algebras is introduced and also characterized these classes of BE-algebras in terms of dual annihilators. The concept of strong regular filter is introduced and then quasi-complemented BE-algebras and strong BE-algebras are characterized in terms of strong regular filters and O-filters.
Keywords: O-filter, strong regular filter, commutative BE-algebra, quasi-complemented BE-algebra, strong BE-algebra
@article{DMGAA_2021_41_2_a4,
     author = {Kumar, V. Venkata and Rao, M. Sambasiva and Vali, S. Kalesha},
     title = {Quasi-Complemented {BE-Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {265--282},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a4/}
}
TY  - JOUR
AU  - Kumar, V. Venkata
AU  - Rao, M. Sambasiva
AU  - Vali, S. Kalesha
TI  - Quasi-Complemented BE-Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 265
EP  - 282
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a4/
LA  - en
ID  - DMGAA_2021_41_2_a4
ER  - 
%0 Journal Article
%A Kumar, V. Venkata
%A Rao, M. Sambasiva
%A Vali, S. Kalesha
%T Quasi-Complemented BE-Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 265-282
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a4/
%G en
%F DMGAA_2021_41_2_a4
Kumar, V. Venkata; Rao, M. Sambasiva; Vali, S. Kalesha. Quasi-Complemented BE-Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 265-282. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a4/

[1] S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative BE -algebras, Commun. Korean Math. Soc. 27 (2012) 233–242. https://doi.org/10.4134/CKMS.2012.27.2.233

[2] A. Borumand Saeid, A. Rezaei and R.A. Borzooei, Some types of filters in BE-algebras, Math.Comput.Sci. 7 (2013) 341–352. https://doi.org/10.1007/s11786-013-0157-6

[3] I. Chajda, R. Hala š and Y.B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, Comment. Math. Univ. Carolin. 43 (2002) 407–417. http://dml.cz/dmlcz/119331

[4] W.H. Cornish, Quasicomplemented lattices, Commentationes Mathematicae Universitatis Carolinae 15 (1974) 501–511. http://dml.cz/dmlcz/105573

[5] R. Hala š, Annihilators in BCK-algebras, Czech. Math. J. 53(128) (2003) 1001–1007. https://doi.org/10.1023/B:CMAJ.0000024536.04596.67

[6] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1979) 1–26.

[7] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Japon. Online (2006) 1299–1302.

[8] B.L. Meng, On filters in BE-algebras, Sci. Math. Japon. Online (2010) 105–111.

[9] A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX (2012) 33–44.

[10] A. Rezaei and A. Borumand Saeid, Commutative ideals in BE-algebras, Kyungpook Math. J. 52 (2012) 483–494. https://doi.org/10.5666/KMJ.2012.52.4.483

[11] M. Sambasiva Rao, Prime filters of commutative BE-algebras, J. Appl. Math. & Informatics 33(5-6) (2015) 579–591. https://doi.org/10.14317/jami.2015.579

[12] V. Venkata Kumar and M. Sambasiva Rao, Dual annihilator filters of commutative BE-algebras, Asian-European j. Math. 10 (2017) 1750013(11 pages). https://doi.org/10.1142/S1793557117500139

[13] V. Venkata Kumar, M. Sambasiva Rao and S. Kalesha Vali, Regular filters of commutative BE-algebras, TWMS J. App. and Eng. Math (to be appeared).

[14] A. Walendziak, On commutative BE-algebras, Sci. Math. Japon. Online (2008) 585–588.