Quasi-Complemented BE-Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 265-282

Voir la notice de l'article provenant de la source Library of Science

The concept of O-filters is introduced in commutative BE-algebras. An equivalent condition is derived for every strong regular filter of a BE-algebra to become an O-filter. The concept of quasi-complemented BE-algebras is introduced and also characterized these classes of BE-algebras in terms of dual annihilators. The concept of strong regular filter is introduced and then quasi-complemented BE-algebras and strong BE-algebras are characterized in terms of strong regular filters and O-filters.
Keywords: O-filter, strong regular filter, commutative BE-algebra, quasi-complemented BE-algebra, strong BE-algebra
@article{DMGAA_2021_41_2_a4,
     author = {Kumar, V. Venkata and Rao, M. Sambasiva and Vali, S. Kalesha},
     title = {Quasi-Complemented {BE-Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {265--282},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a4/}
}
TY  - JOUR
AU  - Kumar, V. Venkata
AU  - Rao, M. Sambasiva
AU  - Vali, S. Kalesha
TI  - Quasi-Complemented BE-Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 265
EP  - 282
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a4/
LA  - en
ID  - DMGAA_2021_41_2_a4
ER  - 
%0 Journal Article
%A Kumar, V. Venkata
%A Rao, M. Sambasiva
%A Vali, S. Kalesha
%T Quasi-Complemented BE-Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 265-282
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a4/
%G en
%F DMGAA_2021_41_2_a4
Kumar, V. Venkata; Rao, M. Sambasiva; Vali, S. Kalesha. Quasi-Complemented BE-Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 265-282. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a4/