On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 249-264.

Voir la notice de l'article provenant de la source Library of Science

In this paper some characterizations of Hom-Leibniz superalgebras are given and some of their basic properties are found. These properties can be seen as a generalization of corresponding well-known properties of Hom-Leibniz algebras. Considering the Hom-Akivis superalgebra associated to a given Hom-Leibniz superalgebra, it is observed that the Hom-super Akivis identity leads to an additional property of Hom-Leibniz superalgebras, which in turn gives a necessary and sufficient condition for Hom-super Lie admissibility of Hom-Leibniz superalgebras. We also show that every (left) Hom-Leibniz superalgebra has a natural super Hom-Lie-Yamaguti structure.
Keywords: Hom-Leibniz superalgebras, Hom-Akivis superalgebras, Hom-Lie-Yamaguti superalgebras
@article{DMGAA_2021_41_2_a3,
     author = {Attan, Sylvain and Gaparayi, Donatien and Issa, A. Nourou},
     title = {On {Hom-Leibniz} and {Hom-Lie-Yamaguti} {Superalgebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {249--264},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a3/}
}
TY  - JOUR
AU  - Attan, Sylvain
AU  - Gaparayi, Donatien
AU  - Issa, A. Nourou
TI  - On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 249
EP  - 264
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a3/
LA  - en
ID  - DMGAA_2021_41_2_a3
ER  - 
%0 Journal Article
%A Attan, Sylvain
%A Gaparayi, Donatien
%A Issa, A. Nourou
%T On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 249-264
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a3/
%G en
%F DMGAA_2021_41_2_a3
Attan, Sylvain; Gaparayi, Donatien; Issa, A. Nourou. On Hom-Leibniz and Hom-Lie-Yamaguti Superalgebras. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 249-264. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a3/

[1] K. Abdaoui, F. Ammar and A. Makhlouf, Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras, Bull. Malays. Math. Sci. Soc. 40 (2017) 439–472. https://doi.org/10.1007/s40840-016-0323-5

[2] H. Albuquerque A. P. Santana Akivis superalgebras and speciality, Contemporary Math. 483 (2009) 13–22.

[3] F. Ammar and A. Makhlouf, Hom-Lie superalgebras and Hom-Lie admissible super-algebras, J. Algebra 324 (2010) 1513–1528. https://doi.org/10.1016/j.jalgebra.2010.06.014

[4] H. Ataguema, A. Makhlouf and S.D. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys. 50 (2009) 083501. https://doi.org/10.1063/1.3167801

[5] D. Gaparayi and A.N. Issa, Hom-Akivis superalgebras, J. Alg. Comput. Appl. 6 (2017) 36–51.

[6] D. Gaparayi and A.N. Issa, A Twisted Generalization of Lie-Yamaguti Algebras, Int. J. Algebra 7 (2012) 339–352.

[7] D. Gaparayi and A.N. Issa, Hom-Lie-Yamaguti structures on Hom-Leibniz algebras, Extracta Math. 28 (2013) 1–12.

[8] D. Gaparayi, S. Attan and A.N. Issa, Hom-Lie-Yamaguti superalgebras, Korean J. Math. 27 (2019) 175–192. https://doi.org/10.11568/kjm.2019.27.1.175

[9] Y. Fregier and A. Gohr, Unital algebras of Hom-associative type and surjective or injective twistings, J. Gen. Lie Theo. and Appl. 3 (2009) 285–295.

[10] J.T Hartwig, D. Larsson and S.D. Silvestrov, Deformations of Lie algebras using σ -derivations, J. Algebra 295 (2006) 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036

[11] A.N. Issa, Some characterizations of Hom-Leibniz algebras, International Int. Elect. J. Alg. 14 (2013) 1–9.

[12] A.N. Issa, Hom-Akivis algebras, Comment. Math. Univ. Carolin. 52 (2011). http://dml.cz/dmlcz/142800

[13] Q. Jin and X. Li, Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra 319 (2008) 1398–1408. https://doi.org/10.1016/j.jalgebra.2007.12.005

[14] M.K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids and multiplications on reductive homogeneous spaces, Amer. J. Math. 123 (2001) 525–550. https://doi.org/10.1353/ajm.2001.0017

[15] J-L. Loday. Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. 39 (1993) 269–293.

[16] A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Elect. J. Alg. 8 (2010) 177–190.

[17] A. Makhlouf, Paradigm of nonassociative Hom-algebras and Hom-superalgebras, in: Proceedings of Jordan structures in algebra and Analysis Meeting, 143–177, Editional Circulo Rojo (Almeria, 2010).

[18] Qi Nie and Zhen Li, The Classification of 4 -dimensional Leibniz Superalgebras, Math. Aeterna 7 2017 375–380.

[19] I.P. Shestakov, Prime Mal’tsev superalgebras, Mat. Sb 182 (1991) 1357–1366.

[20] B. Sun, The construction of Hom-Novikov superalgebras, Math. Aeterna 6 (2016) 605–609.

[21] C. Wang, Q. Zhang and Z. Wei, Hom-Leibniz superalgebras and Hom-Leibniz Poisson superalgebras, Hacet. J. Math. Stat. 44 (2015) 1163–1179.

[22] D. Yau, Hom-Malcev, Hom-alternative, and Hom-Jardan algebras, Int. Elect. J. Alg. 11 (2012) 177–217.

[23] D. Yau, Hom-algebras and Homology, J. Lie Theory 19 (2009) 409–421.

[24] D. Yau, Hom-Novikov algebras, J. Phys. A 44 (2011) 085202.

[25] D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys. 62 (2012) 506–522. https://doi.org/10.1016/j.geomphys.2011.11.006

[26] J.X. Yuan, L.P. Sun and W.D. Liu, Multiplicative Hom-Lie superalgebra structures on infinite dimensional simple Lie superalgebras of vector fields, J. Geom. Phys. 84 (2014) 1–7. https://doi.org/10.1016/j.geomphys.2014.06.001