A Result on Prime Rings with Generalized Derivations
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 439-446.

Voir la notice de l'article provenant de la source Library of Science

In this paper we investigate the following result. Let R be a prime ring, Q its symmetric Martindale quotient ring, C its extended centroid, I a nonzero ideal of R. If F and G are the two generalized derivation of R such that (F(xy) + G(yx))n − (xy ∓ yx)n = 0, for all x, y ∈ I, then either R is commutative or F (x) = x, G(x) = ∓x for all x ∈ R and n = 1.
Keywords: prime ring, generalized derivations, quotient ring, extended centroid
@article{DMGAA_2021_41_2_a14,
     author = {Shujat, Faiza and Khan, Shahoor},
     title = {A {Result} on {Prime} {Rings} with {Generalized} {Derivations}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {439--446},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a14/}
}
TY  - JOUR
AU  - Shujat, Faiza
AU  - Khan, Shahoor
TI  - A Result on Prime Rings with Generalized Derivations
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 439
EP  - 446
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a14/
LA  - en
ID  - DMGAA_2021_41_2_a14
ER  - 
%0 Journal Article
%A Shujat, Faiza
%A Khan, Shahoor
%T A Result on Prime Rings with Generalized Derivations
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 439-446
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a14/
%G en
%F DMGAA_2021_41_2_a14
Shujat, Faiza; Khan, Shahoor. A Result on Prime Rings with Generalized Derivations. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 439-446. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a14/

[1] C. Faith and Y. Utumi, On a new proof of Litoff’s theorem, Acta Math. Acad. Sci. Hungar. 14 (1963) 369–371. https://doi.org/10.1007/BF01895723

[2] C.L. Chuang, GPI’s having coe cients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723–728. https://doi.org/10.1090/S0002-9939-1988-0947646-4

[3] C. Lanski, An engle condition with derivation, Proc. Amer. Mathp. Soc. 183 (1993) 731–734. https://doi.org/10.1090/S0002-9939-1993-1132851-9

[4] I.N. Herstein, Topics in Ring Theory (Univ. of Chicago Press, Chicago, 1969).

[5] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Math. 196 (New York, Marcel Dekker, Inc. 1996).

[6] M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992) 205–206. https://doi.org/10.1155/S0161171292000255

[7] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub. 37 (Amer. Math. Soc., Providence, RI, 1964).

[8] S. Khan, F. Shujat and G. Alhendi, A Result on annihilator condition and generalized derivations of prime rings, J.P. Journal of Alg. Num. Th. Appl. 43 (2019) 101–110. https://doi.org/10.17654/NT043020101

[9] S. Huang and B. Davvaz, Generalized derivations of rings and Banach algebras, Comm. Algebra 41 (2013) 1188–1194. https://doi.org/10.1080/00927872.2011.642043

[10] T.S. Erickson, W.S. Martindale III and J.M. Osborn, Prime non-associative algebras, Pacific J. Math. 60 (1975) 49–63. https://doi.org/10.2140/pjm.1975.60.49

[11] T.K. Lee, Semiprime rings with differential identites, Bull. Inst. Math. Acad. Sinica 20 (1992) 27–38.

[12] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1999) 4057–4073. https://doi.org/10.1080/00927879908826682

[13] V.K. Kharchenko, Differential identity of prime rings, Algebra and Logic 17 (1978) 155–168. https://doi.org/10.1007/BF01670115

[14] V. De Filippis and S. Huang, Generalized derivations on semi prime rings, Bull. Korean Math. Soc. 48 (6) (2011) 1253–1259. https://doi.org/10.4134/BKMS.2011.48.6.1253

[15] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1972) 576–584. https://doi.org/10.1016/0021-8693(69)90029-5