Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_2_a12, author = {Gr\"atzer, G. and Lakser, H.}, title = {Revisiting the {Representation} {Theorem} of {Finite} {Distributive} {Lattices} with {Principal} {Congruences.} {A} {\protect\emph{Proof-By-Picture}} {Approach}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {411--417}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a12/} }
TY - JOUR AU - Grätzer, G. AU - Lakser, H. TI - Revisiting the Representation Theorem of Finite Distributive Lattices with Principal Congruences. A Proof-By-Picture Approach JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 411 EP - 417 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a12/ LA - en ID - DMGAA_2021_41_2_a12 ER -
%0 Journal Article %A Grätzer, G. %A Lakser, H. %T Revisiting the Representation Theorem of Finite Distributive Lattices with Principal Congruences. A Proof-By-Picture Approach %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 411-417 %V 41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a12/ %G en %F DMGAA_2021_41_2_a12
Grätzer, G.; Lakser, H. Revisiting the Representation Theorem of Finite Distributive Lattices with Principal Congruences. A Proof-By-Picture Approach. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 411-417. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a12/
[1] The Dilworth Theorems, Selected papers of Robert P. Dilworth. Edited by Kenneth P. Bogart, Ralph Freese, and Joseph P.S. Kung, Contemporary Mathematicians (Birkhäuser Boston, Inc., Boston, MA, 1990). https://doi.org/10.1016/0001-8708(92)90026-h
[2] G. Grätzer, Standard ideals, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1959) 81–97 (Hungarian).
[3] G. Grätzer, Lattice Theory: Foundation (Birkhäuser Verlag, Basel, 2011).
[4] G. Grätzer, The order of principal congruences of a bounded lattice, Algebra Univ. 70 (2013) 95–105. https://doi.org/10.1007/s00012-013-0242-3
[5] G. Grätzer, The Congruences of a Finite Lattice, A “Proof-by-Picture” Approach, Second edition (Birkhäuser Verlag, Basel, 2016). https://doi.org/10.1007/0-817
[6] G. Grätzer and H. Lakser, Some preliminary results on the set of principal congruences of a finite lattice, Algebra Univ. 79 (2018), paper no. 21. https://doi.org/10.1007/s00012-018-0487-y
[7] G. Grätzer and H. Lakser, Minimal representations of a finite distributive lattice by principal congruences of a lattice, Acta Sci. Math. (Szeged) 85 (2019) 69–96. https://doi.org/10.14232/actasm-017-060-9
[8] G. Grätzer, H. Lakser and E.T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998) 290–297. https://doi.org/10.4153/cmb-1998-041-7
[9] G. Grätzer and E.T. Schmidt, Standard ideals in lattices, Acta Math. Acad. Sci. Hungar. 12 (1961) 17–86.
[10] G. Grätzer and E.T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962) 179–185.