Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2021_41_2_a1, author = {Patra, Asim}, title = {Fascinating {Number} {Sequences} from {Fourth} {Order} {Difference} {Equation} {Via} {Quaternion} {Algebras}}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {229--237}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a1/} }
TY - JOUR AU - Patra, Asim TI - Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2021 SP - 229 EP - 237 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a1/ LA - en ID - DMGAA_2021_41_2_a1 ER -
%0 Journal Article %A Patra, Asim %T Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras %J Discussiones Mathematicae. General Algebra and Applications %D 2021 %P 229-237 %V 41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a1/ %G en %F DMGAA_2021_41_2_a1
Patra, Asim. Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 229-237. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a1/
[1] W.M. Abd-Elhameed and N.A. Zeyada, A generalization of generalized Fibonacci and generalized Pell numbers, Int. J. Math. Educ. Sci. Technol. 48 (2017) 102–107. https://doi.org/10.1080/0020739X.2016.1170900
[2] M. Basu and B. Prasad, The generalized relation among the code elements for Fibonacci coding theory, Chaos, Solitons and Fractals 41 (2009) 2517–2525. https://doi.org/10.1016/j.chaos.2008.09.030
[3] A. Behera and G.K. Panda, On the square roots of triangular numbers, Fibonacci Quarterly 37 (1999) 98–105.
[4] T.M. Cover and J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991).
[5] C. Flaut and D. Savin, Quaternion algebras and generalized Fibonacci-Lucas quaternions, Adv. Appl. Cli ord Algebras 25 (2015) 853–62. https://doi.org/10.1007/s00006-015-0542-0
[6] C. Flaut and D. Savin, Some special number sequences obtained from a difference equation of degree three, Chaos, Solitons and Fractals 106 (2018) 67–71. https://doi.org/10.1016/j.chaos.2017.11.015
[7] M.E. Koroglu, I. Ozbek and I. Siap, Optimal codes from Fibonacci polynomials and secret sharing schemes, Arab J. Math. (2017) 1–12. https://doi.org/10.1007/s40065-017-0171-7
[8] G.K. Panda and P.K. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bull. Inst. Math. Acad. Sin. (New Series) 6 (2011) 41–72.
[9] P.K. Ray, Some congruences for Balancing and Lucas-Balancing Numbers and their Applications, Integers 14 (2014) A8.
[10] D. Savin, A bout special elements in quaternion algebras over finite fields, Adv. Appl. Cli ord Algebras 27 (2017) 1801–13. https://doi.org/10.1007/s00006-016-0718-2
[11] A. Stakhov, V. Massingue and A. Sluchenkov, Introduction into Fibonacci Coding and Cryptography (Osnova, Kharkov, 1999).
[12] A.P. Stakhov, Fibonacci matrices, a generalization of the Cassini formula and a new coding theory, Chaos, Solitons and Fractals 30 (2006) 56–66. https://doi.org/10.1016/j.chaos.2005.12.054
[13] J. Voight, The arithmetic of quaternion algebras, http://www.math.dartmouth.edu/jvoight/crmquat/book/quatmodforms-041310, (2015).