Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 229-237.

Voir la notice de l'article provenant de la source Library of Science

The balancing and Lucas-balancing numbers are solutions of second order recurrence relations. A linear combination of these numbers can also be obtained as solutions of a fourth order recurrence relation. This recurrence relation can be extended to generalized quaternion algebras. Also, the fourth order recurrence relation has application in coding theory.
Keywords: balancing numbers, Lucas-balancing numbers, quaternion algebra, Coding theory, Pell and Lucas-Pell numbers
@article{DMGAA_2021_41_2_a1,
     author = {Patra, Asim},
     title = {Fascinating {Number} {Sequences} from {Fourth} {Order} {Difference} {Equation} {Via} {Quaternion} {Algebras}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {229--237},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a1/}
}
TY  - JOUR
AU  - Patra, Asim
TI  - Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2021
SP  - 229
EP  - 237
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a1/
LA  - en
ID  - DMGAA_2021_41_2_a1
ER  - 
%0 Journal Article
%A Patra, Asim
%T Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2021
%P 229-237
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a1/
%G en
%F DMGAA_2021_41_2_a1
Patra, Asim. Fascinating Number Sequences from Fourth Order Difference Equation Via Quaternion Algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 41 (2021) no. 2, pp. 229-237. http://geodesic.mathdoc.fr/item/DMGAA_2021_41_2_a1/

[1] W.M. Abd-Elhameed and N.A. Zeyada, A generalization of generalized Fibonacci and generalized Pell numbers, Int. J. Math. Educ. Sci. Technol. 48 (2017) 102–107. https://doi.org/10.1080/0020739X.2016.1170900

[2] M. Basu and B. Prasad, The generalized relation among the code elements for Fibonacci coding theory, Chaos, Solitons and Fractals 41 (2009) 2517–2525. https://doi.org/10.1016/j.chaos.2008.09.030

[3] A. Behera and G.K. Panda, On the square roots of triangular numbers, Fibonacci Quarterly 37 (1999) 98–105.

[4] T.M. Cover and J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991).

[5] C. Flaut and D. Savin, Quaternion algebras and generalized Fibonacci-Lucas quaternions, Adv. Appl. Cli ord Algebras 25 (2015) 853–62. https://doi.org/10.1007/s00006-015-0542-0

[6] C. Flaut and D. Savin, Some special number sequences obtained from a difference equation of degree three, Chaos, Solitons and Fractals 106 (2018) 67–71. https://doi.org/10.1016/j.chaos.2017.11.015

[7] M.E. Koroglu, I. Ozbek and I. Siap, Optimal codes from Fibonacci polynomials and secret sharing schemes, Arab J. Math. (2017) 1–12. https://doi.org/10.1007/s40065-017-0171-7

[8] G.K. Panda and P.K. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bull. Inst. Math. Acad. Sin. (New Series) 6 (2011) 41–72.

[9] P.K. Ray, Some congruences for Balancing and Lucas-Balancing Numbers and their Applications, Integers 14 (2014) A8.

[10] D. Savin, A bout special elements in quaternion algebras over finite fields, Adv. Appl. Cli ord Algebras 27 (2017) 1801–13. https://doi.org/10.1007/s00006-016-0718-2

[11] A. Stakhov, V. Massingue and A. Sluchenkov, Introduction into Fibonacci Coding and Cryptography (Osnova, Kharkov, 1999).

[12] A.P. Stakhov, Fibonacci matrices, a generalization of the Cassini formula and a new coding theory, Chaos, Solitons and Fractals 30 (2006) 56–66. https://doi.org/10.1016/j.chaos.2005.12.054

[13] J. Voight, The arithmetic of quaternion algebras, http://www.math.dartmouth.edu/jvoight/crmquat/book/quatmodforms-041310, (2015).